Advertisement

On Variable Consistency Dominance-Based Rough Set Approaches

  • Jerzy Błaszczyński
  • Salvatore Greco
  • Roman Słowiński
  • Marcin Szeląg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4259)

Abstract

We consider different variants of Variable Consistency Dominance-based Rough Set Approach (VC-DRSA). These variants produce more general (extended) lower approximations than those computed by Dominance-based Rough Set Approach (DRSA), (i.e., lower approximations that are supersets of those computed by DRSA). They define lower approximations that contain objects characterized by a strong but not necessarily certain relation with approximated sets. This is achieved by introduction of parameters that control consistency of objects included in lower approximations. We show that lower approximations generalized in this way enable us to observe dependencies that remain undiscovered by DRSA. Extended lower approximations are also a better basis for rule generation. In the paper, we focus our considerations on different definitions of generalized lower approximations. We also show definitions of VC-DRSA decision rules, as well as their application to classification/sorting and ranking/choice problems.

Keywords

Decision Rule Lower Approximation Decision Table Decision Class Variable Consistency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Błaszczyński, J., Słowiński, R.: Incremental Induction of Decision Rules from Dominance-based Rough Approximations. Electronic Notes in Theoretical Computer Science 82, 4 (2003)Google Scholar
  2. 2.
    Dembczyński, K., Pindur, R., Susmaga, R.: Generation of Exhaustive Set of Rules within Dominance-based Rough Set Approach. Electronic Notes in Theoretical Computer Science 82, 4 (2003)Google Scholar
  3. 3.
    Fortemps, P., Greco, S., Słowiński, R.: Multicriteria decision support using rules that represent rough-graded preference relations (submitted, 2005)Google Scholar
  4. 4.
    Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129(1), 1–47 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Greco, S., Matarazzo, B., Słowiński, R., Stefanowski, J.: Variable Consistency Model of Dominance-Based Rough Sets Approach. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 170–181. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Greco, S., Matarazzo, B., Słowiński, R., Stefanowski, J.: An algorithm for induction of decision rules consistent with the dominance principle. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 304–313. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Greco, S., Matarazzo, B., Słowiński, R.: Rough membership and bayesian confirmation measures for parameterized rough sets. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS, vol. 3641, pp. 314–324. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Grzymala-Busse, J.W.: LERS - A system for learning from examples based on rough sets. In: Słowiński, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough sets Theory, pp. 3–18. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  9. 9.
    Pawlak, Z.: Rough sets. International Journal of Information & Computer Sciences 11, 341–356 (1982)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Pawlak, Z., Skowron, A.: Rough membership functions. In: Yaeger, R.R., Fedrizzi, M., Kacprzyk, J. (eds.) Advances in the Dempster Shafer Theory of Evidence, pp. 251–271. John Wiley & Sons, Inc., Chichester (1994)Google Scholar
  11. 11.
    Ślęzak, D.: Rough Sets and Bayes Factor. Transactions on Rough Sets III, 202–229 (2005)Google Scholar
  12. 12.
    Ślęzak, D., Ziarko, W.: The investigation of the Bayesian rough set model. International Journal of Approximate Reasoning 40, 81–91 (2005)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Słowiński, R., Stefanowski, J.: RoughDAS and RoughClass software implementations of rough sets approach. In: Słowiński, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, pp. 445–456. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  14. 14.
    Słowiński, R., Greco, S., Matarazzo, B.: Mining decision-rule preference model from rough approximation of preference relation. In: Proc. 26th IEEE Annual International Conference on Computer Software & Applications, Oxford, England, pp. 1129–1134 (2002)Google Scholar
  15. 15.
    Słowiński, R., Greco, S.: Inducing Robust Decision Rules from Rough Approximations of a Preference Relation. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 118–132. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Słowiński, R., Greco, S., Matarazzo, B.: Rough Set Based Decision Support. In: Burke, E., Kendall, G. (eds.) Introductory Tutorials on Optimization, Search and Decision Support Methodologies, ch. 16. Kluwer Academic Publishers, Boston (2005)Google Scholar
  17. 17.
    Skowron, A.: Boolean Reasoning for Decision Rules Generation. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 295–305. Springer, Heidelberg (1993)Google Scholar
  18. 18.
    Stefanowski, J.: On rough set based approaches to induction of decision rules. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Data Mining and Knowledge Discovery, vol. 1, pp. 500–529. Physica-Verlag, Heidelberg (1998)Google Scholar
  19. 19.
    Ziarko, W.: Variable Precision Rough Set Model. J. Comput. Syst. Sci. 46(1), 39–59 (1993)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jerzy Błaszczyński
    • 1
  • Salvatore Greco
    • 2
  • Roman Słowiński
    • 1
    • 3
  • Marcin Szeląg
    • 1
  1. 1.Institute of Computing SciencePoznań University of TechnologyPoznańPoland
  2. 2.Faculty of EconomicsUniversity of CataniaCataniaItaly
  3. 3.Institute for Systems ResearchPolish Academy of SciencesWarsawPoland

Personalised recommendations