Auditing and Inference Control for Privacy Preservation in Uncertain Environments

  • Xiangdong An
  • Dawn Jutla
  • Nick Cercone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4272)


In ubiquitous environments, context-aware agents have been developed to obtain, understand and share local contexts with each other so that the environments could be integrated seamlessly. Context sharing among agents should be made privacy-conscious. Privacy preferences are generally specified to regulate the exchange of the contexts, where who have rights to have what contexts are designated. However, the released contexts could be used to derive those unreleased. To date, there have been very few inference control mechanisms specifically tailored to context management in ubiquitous environments, especially when the environments are uncertain. In this paper, we present a Bayesian network-based inference control method to prevent privacy-sensitive contexts from being derived from those released in ubiquitous environments. We use Bayesian networks because the contexts of a user are generally uncertain, especially from somebody else’s point of view.


Bayesian Network Uncertain Environment Privacy Preservation Conditional Probability Distribution Privacy Preference 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing environments. Knowledge Engineering Review, Special Issue on Ontologies for Distributed Systems 18(3), 197–207 (2004)Google Scholar
  2. 2.
    Khedr, M., Karmouch, A.: Negotiating context information in context-aware systems. IEEE Intelligent Systems 19(6), 21–29 (2004)CrossRefGoogle Scholar
  3. 3.
    Khedr, M., Karmouch, A.: ACAI: Agent-based context-aware infrastructure for spontaneous applications. Journal of Network and Computer Applications 28(1), 19–44 (2005)CrossRefGoogle Scholar
  4. 4.
    Davies, N., Gellersen, H.W.: Beyond prototypes: Challenges in deploying ubiquitous systems. IEEE Pervasive Computing 1(1), 26–35 (2002)CrossRefGoogle Scholar
  5. 5.
    Dey, A.: Understanding and using context. Personal and Ubiquitous Computing 5(1), 4–7 (2001)CrossRefGoogle Scholar
  6. 6.
    Warren, S., Brandeis, L.: The right to privacy. Harvard Law Review 4, 193–220 (1890)CrossRefGoogle Scholar
  7. 7.
    An, X., Jutla, D.: A survey of privacy technologies. Technical report, Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada (2005)Google Scholar
  8. 8.
    Cranor, L., Langheinrich, M., Marchiori, M., Presler-Marshall, M., Reagle, J.: The platform for privacy preferences 1.0 (P3P 1.0) specification. Technical report, W3C Recommendation (2002),
  9. 9.
    Cranor, L., Langheinrich, M., Marchiori, M.: A P3P preference exchange language 1.0 (APPEL 1.0). Technical report, W3C Working Draft (2002),
  10. 10.
    Clark, J., DeRose, S.: XML Path language (XPath) Version 1.0. Technical report, W3C Recommendation (1999),
  11. 11.
    Agrawal, R., Kieman, J., Srikant, R., Xu, Y.: An XPath-based preference language for P3P. In: Proceedings of the 12th International WWW Conference (WWW 2003), Budapest, Hungary (May 2003)Google Scholar
  12. 12.
    McBride, B., Wenning, R., Cranor, L.: A RDF schema for P3P. Technical report, W3C Note (2002),
  13. 13.
    Hogben, G.: P3P using the semantic web (OWL ontology, RDF policy and RDQL rules). Technical report, W3C Working Group Note (2004),
  14. 14.
    Hogben, G.: Describing the P3P base data schema using OWL. In: Kagal, L., Finin, T., Hendler, J. (eds.) Policy Management for the Web (PM4W): Proceedings of the 14th World Wide Web Conference (WWW’05) Workshop, Chiba, Japan, pp. 44–51 (2005)Google Scholar
  15. 15.
    Gandon, F.L., Sadeh, N.M.: Semantic web technologies to reconcile privacy and context awareness. Journal of Web Semantics 1(3) (2005)Google Scholar
  16. 16.
    Kagal, L., Finin, T., Joshi, A.: A policy language for pervasive systems. In: Proceedings of the 4th IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY 2003), Lake Como (2003)Google Scholar
  17. 17.
    Kagal, L., Finin, T., Joshi, A.: Declarative policies for describing web services capabilities and constraints. In: Proceedings of the W3C Workshop on Constraints and Capabilities for Web Services, Redwood Shores, CA, USA (2004)Google Scholar
  18. 18.
    Kolari, P., Ding, L., Ganjugunte, S., Kagal, L., Joshi, A., Finin, T.: Enhancing web privacy protection through declarative policies. In: Sahai, A., Winsborough, W.H. (eds.) Proceedings of the 6th IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY 2005), Stockholm, Sweden, pp. 57–66. IEEE Computer Society, Los Alamitos (2005)CrossRefGoogle Scholar
  19. 19.
    Fellegi, I.: On the question of statistical confidentiality. Journal of American Statistical Association 67(337), 7–18 (1972)MATHCrossRefGoogle Scholar
  20. 20.
    Denning, D.: Secure statistical databases with random sample queries. ACM Transactions on Database Systems 5(3), 291–315 (1980)MATHCrossRefGoogle Scholar
  21. 21.
    Staddon, J.: Dynamic inference control. In: Zaki, M.J., Aggarwal, C.C. (eds.) Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD 2003), pp. 94–100. ACM Press, New York (2003)CrossRefGoogle Scholar
  22. 22.
    Shoshani, A.: Statistical databases: Characteristics, problems and some solutions. In: Proceedings of the 8th International Conference on Very Large Databases (VLDB 1982), Mexico City, Mexico, pp. 208–213 (1982)Google Scholar
  23. 23.
    Dey, A., Mankoff, J., Abowd, G., Carter, S.: Distributed mediation of ambiguous context in aware environments. In: Beaudouin-Lafon, M. (ed.) Proceedings of the 15th Annual ACM Symposium on User Interface Software and Technology (UIST 2002), Paris, France, pp. 121–130. ACM Press, New York (2002)CrossRefGoogle Scholar
  24. 24.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, San Francisco (1988)Google Scholar
  25. 25.
    Wong, W.-K., Cooper, G., Wagner, M.: Bayesian network anomaly pattern detection for disease outbreaks. In: Proceedings of the 20th International Conference on Machine Learning (ICML-2003), Washington DC, USA (2003)Google Scholar
  26. 26.
    Johansen, K., Lee, S.: Network security: Bayesian network intrusion detection. Technical report, Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA (2003)Google Scholar
  27. 27.
    Kruegel, C., Mutz, D., Robertson, W., Valeur, F.: Bayesian event classification for intrusion detection. In: Proceedings of the 19th Annual Computer Security Applications Conference, LasVegas, Nevada, USA (2003)Google Scholar
  28. 28.
    Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Nute, D.: Defeasible reasoning. In: Proceedings of the 20th Hawaii International Conference on System Science, Kailua-Kona, HI, USA, pp. 470–477. IEEE Press, Los Alamitos (1987)Google Scholar
  30. 30.
    Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    McCarthy, J.: Circumscription | a form of non-monotonic reasoning. Artificial Intelligence 13, 27–39 (1980)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Moore, R.C.: Semantical considerations on non-monotonic logic. Artificial Intelligence 28, 75–94 (1985)CrossRefGoogle Scholar
  33. 33.
    Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Annual Mathematical Statistics 38, 325–339 (1967)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)MATHGoogle Scholar
  35. 35.
    Dubois, D., Lang, J., Prade, H.: Automated reasoning using possibilistic logic: semantics, belief revision, and variable certainty weights. IEEE Transactions on Knowledge and Data Engineering 6(1), 64–71 (1994)CrossRefGoogle Scholar
  36. 36.
    Neapolitan, R.E.: Probabilistic Reasoning in Expert Systems: Theory and Algorithms. John Wiley & Sons, Inc., New York (1990)Google Scholar
  37. 37.
    Jajodia, S., Sandhu, R.: Polyinstantiation integrity in multilevel relations. In: Proceedings of the 1990 IEEE Symposium on Security and Privacy, pp. 104–115. IEEE Computer Society, Los Alamitos (1990)CrossRefGoogle Scholar
  38. 38.
    Cuppens, F., Gabillon, A.: Logical foundations of multilevel databases. Data & Knowledge Engineering 29(3), 199–222 (1999)CrossRefGoogle Scholar
  39. 39.
    Denning, D.E., Schlörer, J.: Inference control for statistical databases. IEEE Computer 16(7), 69–82 (1983)Google Scholar
  40. 40.
    Yip, R.W., Levitt, K.N.: Data level inference detection in database systems. In: Proceedings of the 11th IEEE Computer Security Foundations, Rockport, MA, pp. 179–189 (1998)Google Scholar
  41. 41.
    Denning, D.E., Denning, P.J., Schwartz, M.D.: The tracker: a threat to statistical database security. ACM Transactions on Database Systems 4(1), 76–96 (1979)CrossRefGoogle Scholar
  42. 42.
    Dobkin, D., Jones, A., Lipton, R.: Secure databases: Protection against user influence. ACM Transactions on Database Systems 4(1), 97–106 (1979)CrossRefGoogle Scholar
  43. 43.
    Cox, L.H.: Suppression methodology and statistical disclosure control. Journal of the American Statistical Association 75(370), 377–385 (1980)MATHCrossRefGoogle Scholar
  44. 44.
    Chin, F.Y., Özsoyoglu, G.: Auditing and inference control in statistical databases. IEEE Transactions on Software Engineering 8(6), 574–582 (1982)CrossRefGoogle Scholar
  45. 45.
    Kleinberg, J., Papadimitriou, C., Raghavan, P.: Auditing boolean attributes. In: Proceedings of the 19th ACM SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 2000), Dallas, TX, pp. 86–91. ACM Press, New York (2000)CrossRefGoogle Scholar
  46. 46.
    Traub, J.F., Yemini, Y., Woznaikowski, H.: The statistical security of a statistical database. ACM Transactions on Database Systems 9(4), 672–679 (1984)CrossRefGoogle Scholar
  47. 47.
    Beck, L.L.: A security mechanism for statistical databases. ACM Transactions on Database Systems 5(3), 316–338 (1980)MATHCrossRefGoogle Scholar
  48. 48.
    Reiss, S.P.: Practical data-swapping: The first steps. ACM Transactions on Database Systems 9(1), 20–37 (1984)MATHCrossRefGoogle Scholar
  49. 49.
    Biskup, J., Bonatti, P.A.: Lying versus refusal for known potential secrets. Data & Knowledge Engineering 38, 199–222 (2001)MATHCrossRefGoogle Scholar
  50. 50.
    Sicherman, G.L., de Jonge, W., van de Riet, R.P.: Answering queries without revealing secrets. ACM Transactions on Database Systems 8(1), 41–59 (1983)MATHCrossRefGoogle Scholar
  51. 51.
    Stickel, M.E.: Elimination of inference channels by optimal upgrading. In: Proceedings of the 1994 IEEE Symposium on Security and Privacy, Oakland, CA, pp. 168–174. IEEE Computer Society, Los Alamitos (1994)Google Scholar
  52. 52.
    Biskup, J.: For unknown secrecies refusal is better than lying. Data & Knowledge Engineering 33, 1–24 (2000)MATHCrossRefGoogle Scholar
  53. 53.
    Biskup, J., Bonatti, P.: Controlled query evaluation for known policies by combing lying and refusal. Annals of Mathematics and Artificial Intelligence 40(1-2), 37–62 (2004)MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Jensen, F.V.: An introduction to Bayesian networks. UCL Press, London, UK (1996)Google Scholar
  55. 55.
    Castillo, E., Gutierrez, J.M., Hadi, A.S.: Expert Systems and Probabilistic Network Models. Springer, Heidelberg (1997)Google Scholar
  56. 56.
    Heckerman, D.: A tutorial on learning with Bayesian networks. Technical report, Microsoft Research, MSR-TR-95-06 (1995)Google Scholar
  57. 57.
    Tong, S., Koller, D.: Active learning for parameter estimation in Bayesian networks. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems 13 (NIPS 2000). MIT Press, Cambridge (2000)Google Scholar
  58. 58.
    Cheng, J., Greiner, R.: Learning Bayesian belief network classifiers: algorithms and systems. In: Proceedings of the 14th Canadian Conference on Artificial Intelligence, pp. 141–151. Springer, Heidelberg (2001)Google Scholar
  59. 59.
    Neapolitan, R.E.: Learning Bayesian Networks. Prentice-Hall, Englewood Cliffs (2003)Google Scholar
  60. 60.
    Meng, D., Sivakumar, K., Kargupta, H.: Privacy sensitive Bayesian network parameter learning. In: Proceedings of the 4th IEEE International Conference on Data Mining (ICDM 2004), Brighton, UK, pp. 427–430. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  61. 61.
    D’Ambrosio, B.: Inference in Bayesian networks. AI Magazine 20(2), 21–36 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xiangdong An
    • 1
    • 2
  • Dawn Jutla
    • 2
  • Nick Cercone
    • 1
  1. 1.Faculty of Computer ScienceDalhousie UniversityHalifaxCanada
  2. 2.Department of Finance, Information Systems, and Management ScienceSaint Mary’s UniversityHalifaxCanada

Personalised recommendations