Maintaining a World Model in a Location-Aware Smart Space

  • R. K. Harle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4272)


Location-aware smart spaces fuse information from a location system and a computational world model to make contextual inferences. To date, research has concentrated on the development of cheap, realisable, accurate location systems. Comparatively little research has addressed the issue of how to maintain the world model so crucial to contextual interferences. This paper details a framework to autonomously monitor a world model (the computer-readable representation of the world) for fine-grained location systems by regularly determining its consistency with the real world. It deals with the interpretation of information that can be derived from positioning systems and the construction of a general grid-based method for evaluating consistency between real and virtual worlds. Results to date are presented using location data from an extensive deployment of a location system, before future avenues of research are identified.


Mobile Robot Location System Virtual World World Model Comparison Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Want, R., Hopper, A., Falcao, V., Gibbons, J.: The Active Badge Location System. In: ACM Transactions on Information Systems (January 1992)Google Scholar
  2. 2.
    Want, R., Schilit, B., Adams, N., Gold, R., Petersen, K., Ellis, J., Goldberg, D., Weiser, M.: The PARCTAB Ubiquitous Computing Experiment. Technical Report CSL-95-1, Xerox Palo Alto Research Center (March 1995)Google Scholar
  3. 3.
    Addlesee, M., Curwen, R., Hodges, S., Newman, J., Steggles, P., Ward, A., Hopper, A.: Implementing a sentient computing system. IEEE Computer 34(8) (August 2001)Google Scholar
  4. 4.
    Richardson, T., Stafford-Fraser, Q., Wood, K.R., Hopper, A.: Virtual Network Computing. IEEE Internet Computing 21(1) (January 1998)Google Scholar
  5. 5.
    Bobick, A., Intille, S., Davis, J., Baird, F., Pinhanez, C., Campbell, L., Ivanov, Y., Schutte, A., Wilson, A.: The KidsRoom: A Perceptually-Based Interactive and Immersive Story Environment. Technical Report 398, MIT Media Lab (December 1996)Google Scholar
  6. 6.
    Krumm, J., Harris, S., Meyers, B., Brumitt, B., Hale, M., Shafer, S.: Multi-Camera Multi-Person Tracking for EasyLiving. In: Proceedings of the Third International Workshop on Visual Surveillance (July 2000)Google Scholar
  7. 7.
    Kato, H., Billinghurst, M., Poupyrev, I., Imamoto, K., Tachibana, K.: Virtual Object Manipulation on a Table-Top AR Environment. In: Proceedings of ISAR 2000 (October 2000)Google Scholar
  8. 8.
    Rekimoto, J.: Matrix: A realtime object identification and registration method for augmented reality. In: Proceedings of Asia Pacific Computer Human Interaction, pp. 63–68 (July 1998)Google Scholar
  9. 9.
    Moravec, H.P.: Sensor fusion in certainty grids for mobile robots. AI Magazine 9, 61–74 (1988)Google Scholar
  10. 10.
    Martin, M.C., Moravec, H.P.: Robot Evidence Grids. Technical Report CMU-RI-TR-96-06, Carnegie Mellon University (1996)Google Scholar
  11. 11.
    Thrun, S.: Learning maps for indoor mobile robot navigation. Artificial Intelligence 99(1), 21–71 (1998)MATHCrossRefGoogle Scholar
  12. 12.
    Ward, A.M.R.: Sensor-driven Computing. PhD thesis, Cambridge University (August 1998)Google Scholar
  13. 13.
    Harle, R.K., Hopper, A.: Using Personnel Movements For Indoor Autonomous Environment Discovery. In: Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, Fort Worth, TX, US (PerCom 2003), pp. 125–132 (March 2003)Google Scholar
  14. 14.
    Harle, R.K., Hopper, A.: Building world models by ray-tracing within ceiling-mounted positioning systems. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 1–17. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Harle, R.K., Hopper, A.: Dynamic World Models from Ray-tracing. In: Proceedings of the Second IEEE International Conference on Pervasive Computing and Communications, Orlando, Florida (PerCom 2004) (March 2004)Google Scholar
  16. 16.
    Harle, R.K., Ward, A., Hopper, A.: A Novel Method for Discovering Reflective Surfaces Using Indoor Positioning Systems. In: Proceedings of the First International Conference on Mobile Systems, Applications, and Services (Mobisys 2003), San Francisco, California, US (2003)Google Scholar
  17. 17.
    Borriello, G., Brunette, W., Hall, M., Hartung, C., Tangney, C.: Reminding about tagged objects using passive rFIDs. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 36–53. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Hahnel, D., Burgand, W., Fox, D., Fishkin, K., Philipose, M.: Mapping and Localization with RFID Technology. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA 2004) (2004)Google Scholar
  19. 19.
    Brusey, J., Floerkemeier, C., Harrison, M., Fletcher, M.: Reasoning about Uncertainty in Location Identification with RFID. In: Workshop on Reasoning with Uncertainty in Robotics (August 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • R. K. Harle
    • 1
  1. 1.Computer LaboratoryUniversity of CambridgeUK

Personalised recommendations