Management of IEEE 802.11e Wireless LAN for Realtime QoS-Guaranteed Teleconference Service with Differentiated H.264 Video Transmission

  • Soo-Yong Koo
  • Byung-Kil Kim
  • Young-Tak Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4267)


Various realtime multimedia applications will be provided in next generation Internet where IEEE 802.11e wireless LAN will be widely used as broadband access networks. The characteristics of the wireless channels in IEEE 802.11 (i.e., fluctuating bandwidth and large error rate), however, impose challenging problems in the efficient QoS-guaranteed realtime multimedia communications with strict QoS requirements (i.e., bandwidth, delay, jitter, and packet loss/error rate). In this paper we propose management schemes of IEEE 802.11e wireless LAN (WLAN) for realtime QoS-guaranteed teleconference services with differentiated H.264 video transmission. In the proposed scheme, the IEEE 802.11e Wireless LAN is managed to transmit I, P and B slices from H.264 encoder using different channels of both HCF controlled channel access (HCCA) and enhanced distributed channel access (EDCA). We compare several different mapping scenarios, and analyze the QoS provisioning performance for realtime multimedia teleconference service.


IEEE 802.11e H.264 QoS Diffserv HCCA EDCA 


  1. 1.
    IEEE Standard for Information Technology, Local and metropolitan area networks – Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications, Amendment 7: Medium Access Control (MAC) Quality of Service (QoS) Enhancements, IEEE std. 802.11e/D12.0 (2004)Google Scholar
  2. 2.
    Ni, Q.: Performance Analysis and Enhancements for IEEE 802.11e Wireless Networks. IEEE Network, 21–27 (July/August 2005)Google Scholar
  3. 3.
    Mangold, S., Choi, S., Hiertz, G., Klein, O., Walke, B.: Analysis of IEEE 802.11e for QoS support in Wireless LANs. IEEE Wireless Communications, 40–50 (December 2003)Google Scholar
  4. 4.
    Ramos, N., Panigrahi, D., Dey, S.: Quality of service provisioning in 802.11e networks: challenges, approaches, and future directions. IEEE Network 19 (July-August 2005)Google Scholar
  5. 5.
    ITU-TH Recommendation 264, Advanced video coding for generic audiovisual services (March 2005)Google Scholar
  6. 6.
    Wiegand, T., Sullivan, G.J., Bjntegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology 13, 560–576 (2003)CrossRefGoogle Scholar
  7. 7.
    Ostermann, J., et al.: Video coding with H.264/AVC: tools, performance, and complexity. IEEE Circuits and Systems Magazine 4, 7–28 (2004)CrossRefGoogle Scholar
  8. 8.
    Richardson, I.E.G.: H.264 and MPEG-4 Video Compression – Video Coding for Next Generation Multimedia. John Wiley & Sons, Chichester (2003)Google Scholar
  9. 9.
    Ksentini, A., Naimi, M., Gueroui, A.: Toward an improvement of H.264 video transmission over IEEE 802.11e through a cross-layer architecture. IEEE Comm. Mag., 107–114 (January 2006)Google Scholar
  10. 10.
    Gao, D., Cai, J., Bao, P., He, Z.: MPEG-4 video streaming quality evaluation in IEEE 802.11e WLANs. In: ICIP 2005, vol. 1, pp. 197–200 (September 2005)Google Scholar
  11. 11.
    Xiao, Y.: Voice and Video Transmissions with Global Data Parameter Control for the IEEE 802.11e Enhance Distributed Channel Access. IEEE Transactions on Parallel and Distributed Systems 15(11), 1041–1053 (2004)CrossRefGoogle Scholar
  12. 12.
    Wenger, S., Hannuksela, M.M., Stockhammer, T., Westerlund, M., Singer, D.: RTP Payload Format for H.264 Video, Internet proposed standard RFC 3984 (February 2005)Google Scholar
  13. 13.
    JM 10.2 reference software,

Copyright information

© IFIP International Federation for Information Processing 2006

Authors and Affiliations

  • Soo-Yong Koo
    • 1
  • Byung-Kil Kim
    • 1
  • Young-Tak Kim
    • 1
  1. 1.Dept. of Information and Communication Engineering, Graduate SchoolYeungnam UniversityKyungbookKorea

Personalised recommendations