Fast Filling Operations Used in the Reconstruction of Convex Lattice Sets

  • Sara Brunetti
  • Alain Daurat
  • Attila Kuba
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)


Filling operations are procedures which are used in Discrete Tomography for the reconstruction of lattice sets having some convexity constraints. In [1], an algorithm which performs four of these filling operations has a time complexity of O(N 2logN), where N is the size of projections, and leads to a reconstruction algorithm for convex polyominoes running in O(N 6 logN)-time. In this paper we first improve the implementation of these four filling operations to a time complexity of O(N 2), and additionally we provide an implementation of a fifth filling operation (introduced in [2]) in O(N 2logN) that permits to decrease the overall time-complexity of the reconstruction algorithm to O(N 4logN). More generally, the reconstruction of Q-convex sets and convex lattice sets (intersection of a convex polygon with ℤ2) can be done in O(N 4logN)-time.


Discrete Tomography Convexity Filling Operations 


  1. 1.
    Gebala, M.: The reconstruction of convex polyominoes from horizontal and vertical projections. In: Rovan, B. (ed.) SOFSEM 1998. LNCS, vol. 1521, pp. 350–359. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Brunetti, S., Del Lungo, A., Del Ristoro, F., Kuba, A., Nivat, M.: Reconstruction of 4- and 8-connected convex discrete sets from row and column projections. Linear Algebra Appl. 339, 37–57 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ryser, H.J.: Combinatorial properties of matrices of zeroes and ones. Canad. J. Math. 9, 371–377 (1957)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kuba, A.: Reconstruction of two-directionally connected binary patterns from their two orthogonal projections. Comp. Vis. Graph. Image process. 27, 249–265 (1984)CrossRefGoogle Scholar
  5. 5.
    Woeginger, G.H.: The reconstruction of polyominoes from their horizontal and vertical projections. Inform. Process. Lett. 77(5-6), 225–229 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex polyominoes from horizontal and vertical projections. Theoret. Comput. Sci. 155, 321–347 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Brunetti, S., Daurat, A.: An algorithm reconstructing convex lattice sets. Theoret. Comput. Sci. 304, 35–57 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Brunetti, S., Daurat, A.: Reconstruction of discrete sets from two or more X-rays in any direction. In: Proc. of IWCIA 2000, Université de Caen, pp. 241–258 (2000)Google Scholar
  9. 9.
    Knuth, D.E.: Balanced Trees (section 6.2.3). In: Sorting and Searching. The Art of Computer Programming, vol. 3, pp. 458–475. Addison-Wesley, Reading (1998)Google Scholar
  10. 10.
    Brunetti, S., Daurat, A.: Reconstruction of Q-convex sets. In: Herman, G.T., Kuba, A. (eds.) Advances in Discrete Tomography and its Applications. Appl. Numer. Harmon. Anal., Birkhäuser (to appear)Google Scholar
  11. 11.
    Gardner, R.J., Gritzmann, P.: Discrete tomography: Determination of finite sets by X-rays. Trans. Amer. Math. Soc. 349, 2271–2295 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Daurat, A.: Determination of Q-convex sets by Xrays. Theoret. Comput. Sci. 332, 19–45 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Brunetti, S., Daurat, A.: Random generation of Q-convex sets. Theoret. Comput. Sci. 347, 393–414 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Daurat, A.: Convexité dans le plan discret. Application à la tomographie. Ph.D thesis, LLAIC1, and LIAFA Université Paris 7 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sara Brunetti
    • 1
  • Alain Daurat
    • 2
  • Attila Kuba
    • 3
  1. 1.Dipartimento di Scienze Matematiche e InformaticheUniversità di SienaSienaItaly
  2. 2.LSIIT CNRS UMR 7005, Université Louis Pasteur (Strasbourg 1)Illkirch-GraffenstadenFrance
  3. 3.Department of Image Processing and Computer GraphicsUniversity of SzegedSzegedHungary

Personalised recommendations