Recognition of Blurred Pieces of Discrete Planes

  • Laurent Provot
  • Lilian Buzer
  • Isabelle Debled-Rennesson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)


We introduce a new discrete primitive, the blurred piece of a discrete plane, which relies on the arithmetic definition of discrete planes. It generalizes such planes, admitting that some points are missing and then permits to adapt to noisy discrete data. Two recognition algorithms of such primitives are proposed: the first one is a geometrical algorithm and minimizes the Euclidean distance and the second one relies on linear programming and minimizes the vertical distance.


Convex Hull Dual Problem Vertical Distance Parallel Plane Simplex Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann publishers, Elsevier (2004)Google Scholar
  2. 2.
    Debled-Rennesson, I., Rémy, J.L., Rouyer-Degli, J.: Linear segmentation of discrete curves into fuzzy segments. Discrete Applied Math. 151, 122–137 (2005)MATHCrossRefGoogle Scholar
  3. 3.
    Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition of noisy shapes in linear time. Computers & Graphics 30(1) (2006)Google Scholar
  4. 4.
    Reveillès, J.: Géométrie discrète, calculs en nombres entiers et algorithmique. Thèse d’Etat – Université Louis Pasteur (1991)Google Scholar
  5. 5.
    Buzer, L.: An elementary algorithm for digital line recognition in the general case. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 299–310. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Debled-Rennesson, I., Tabbone, S., Wendling, L.: Multiorder polygonal approximation of digital curves (Special Issue on Document Analysis). Electronic Letters on Computer Vision and Image Analysis 5(2), 98–110 (2005)Google Scholar
  7. 7.
    Andres, E.: Le plan discret. In: Colloque de géométrie discréte en imagerie: fondements et applications, Strasbourg, France (1993)Google Scholar
  8. 8.
    Houle, M., Toussaint, G.: Computing the width of a set. IEEE Trans. on Pattern Analysis and Machine Intelligence 10(5), 761–765 (1988)MATHCrossRefGoogle Scholar
  9. 9.
    Gärtner, B., Herrmann, T.: Computing the width of a point set in 3-space. J. Exp. Algorithmics 4, 3 (2001)Google Scholar
  10. 10.
    Toussaint, G.: Solving geometric problems with the rotating calipers. In: Proceedings of IEEE MELECON 1983, Athens, Greece (1983)Google Scholar
  11. 11.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (2000)MATHGoogle Scholar
  12. 12.
    Chvatal, V.: Linear Programming. Freeman, New York (1983)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Laurent Provot
    • 1
  • Lilian Buzer
    • 2
  • Isabelle Debled-Rennesson
    • 1
  1. 1.LORIA Nancy, Campus ScientifiqueVandœuvre-lès-NancyFrance
  2. 2.Laboratory CNRS-UMLV-ESIEEUMR 8049Noisy le GrandFrance

Personalised recommendations