A 3D Live-Wire Segmentation Method for Volume Images Using Haptic Interaction

  • Filip Malmberg
  • Erik Vidholm
  • Ingela Nyström
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)


Designing interactive segmentation methods for digital volume images is difficult, mainly because efficient 3D interaction is much harder to achieve than interaction with 2D images. To overcome this issue, we use a system that combines stereo graphics and haptics to facilitate efficient 3D interaction. We propose a new method, based on the 2D live-wire method, for segmenting volume images. Our method consists of two parts: an interface for drawing 3D live-wire curves onto the boundary of an object in a volume image, and an algorithm for connecting two such curves to create a discrete surface.


  1. 1.
    Falcão, A.X., Udupa, J.K., Samarasekera, S., Sharma, S.: User-steered image segmentation paradigms: Live wire and live lane. Graphical Models and Image Processing (60), 223–260 (1998)CrossRefGoogle Scholar
  2. 2.
    Vidholm, E., Tizon, X., Nyström, I., Bengtsson, E.: Haptic guided seeding of MRA images for semi-automatic segmentation. In: Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI 2004), pp. 278–281 (2004)Google Scholar
  3. 3.
    Harders, M., Székely, G.: Enhancing human-computer interaction in medical segmentation. Proceedings of the IEEE, Special Issue on Multimodal Human Computer Interfaces 9(91), 1430–1442 (2003)Google Scholar
  4. 4.
    Falcão, A.X., Udupa, J.K., Miyazawa, F.K.: An ultra-fast user-steered image segmentation paradigm: Live wire on the fly. IEEE Transactions on Medical Imaging 19(1), 55–62 (2000)CrossRefGoogle Scholar
  5. 5.
    Falcão, A.X., Udupa, J.K.: A 3D generalization of user-steered live-wire segmentation. Medical Image Analysis 4(4), 389–402 (2000)CrossRefGoogle Scholar
  6. 6.
    Knapp, M., Kanitsar, A., Groller, M.E.: Semi-automatic topology independent contour based 2 1/2 D segmentation using live-wire. Journal of WSCG 20(1–3) (2004)Google Scholar
  7. 7.
    Schenk, A., Prause, G.P.M., Peitgen, H.-O.: Efficient semiautomatic segmentation of 3D objects in medical images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 186–195. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Hamarneh, G., Yang, J., McIntosh, C., Langille, M.: 3d live-wire-based semi-automatic segmentation of medical images. In: Proceedings of SPIE Medical Imaging: Image Processing, vol. 5747, pp. 1597–1603 (2005)Google Scholar
  9. 9.
    Falcão, A.X., Bergo, F.P.G.: Interactive volume segmentation with differential image foresting transforms. IEEE Transactions on Medical Imaging 23(9) (2004)Google Scholar
  10. 10.
    Reachin Technologies, (accessed 23 January 2006)
  11. 11.
    Technologies, S.: (Accessed 23 January 2006)
  12. 12.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Mortensen, E.N., Barrett, W.: Interactive segmentation with intelligent scissors. Graphical Models and Image Processing 60(5), 349–384 (1998)zbMATHCrossRefGoogle Scholar
  14. 14.
    Kaufman, A.: Efficient algorithms for scan-converting 3D polygons. Computers and Graphics 12(2), 213–219 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Filip Malmberg
    • 1
  • Erik Vidholm
    • 2
  • Ingela Nyström
    • 2
  1. 1.Centre for Image Analysis, Swedish University of Agricultural SciencesUppsalaSweden
  2. 2.Centre for Image AnalysisUppsala UniversityUppsalaSweden

Personalised recommendations