A Generalized Preimage for the Standard and Supercover Digital Hyperplane Recognition

  • Martine Dexet
  • Eric Andres
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)


A new digital hyperplane recognition method is presented. This algorithm allows the recognition of Standard and Supercover hyperplanes by incrementally computing in a dual space the generalized preimage of a given hypervoxel set. Each point in this preimage corresponds to a Euclidean hyperplane which intersects all given hypervoxels. An advantage of the generalized preimage is that it does not depend on the hypervoxel locations. Moreover, the proposed recognition algorithm does not require the hypervoxels to be connected or ordered in any way.


Recognition Algorithm Dual Transformation Discrete Apply Mathematic Plane Recognition Digital Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Klette, R., Rosenfeld, A.: Digital straightness – a review. Discrete Applied Mathematics 139(1–3), 197–230 (2004)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Françon, J., Schramm, J.M., Tajine, M.: Recognizing arithmetic straight lines and planes. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 141–150. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Buzer, L.: A linear incremental algorithm for Naive and Standard digital lines and planes recognition. Graphical models 65(1–3), 61–76 (2003)MATHCrossRefGoogle Scholar
  4. 4.
    Kim, C.E., Stojmenović, I.: On the recognition of digital planes in three-dimensional space. Pattern Recognition Letters 12(11), 665–669 (1991)CrossRefGoogle Scholar
  5. 5.
    Debled-Rennesson, I., Reveillès, J.: A linear algorithm for segmentation of digital curves. International Journal of Pattern Recognition and Artificial Intelligence 9(6), 635–662 (1995)CrossRefGoogle Scholar
  6. 6.
    Gerard, Y., Debled-Rennesson, I., Zimmermann, P.: An elementary digital plane recognition algorithm. DAMATH: Discrete Applied Mathematics and Combinatorial Operations Research and Computer Science 151 (2005)Google Scholar
  7. 7.
    Vittone, J., Chassery, J.-M.: Recognition of digital naive planes and polyhedrization. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 296–307. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Brimkov, V.E., Dantchev, S.S.: Complexity analysis for digital hyperplane recognition in arbitrary fixed dimension. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 287–298. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Stojmenović, I., Tošić, R.: Digitization schemes and the recognition of digital straight lines, hyperplanes, and flats in arbitrary dimensions. In: Vision Geometry, American Mathematical Society. Contemporary Mathematics Series, vol. 119, pp. 197–212 (1991)Google Scholar
  10. 10.
    Coeurjolly, D., Brimkov, V.E.: Computational aspects of digital plane and hyperplane recognition. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 291–306. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Dorst, L., Smeulders, A.W.M.: Discrete representation of straight lines. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(4), 450–463 (1984)MATHCrossRefGoogle Scholar
  12. 12.
    Cœurjolly, D.: Algorithmique et géométrie discrète pour la caractérisation des courbes et des surfaces. PhD thesis, Université Lumière Lyon 2, Lyon, France (2002)Google Scholar
  13. 13.
    Andres, E.: Discrete linear objects in dimension n: the Standard model. Graphical Models 65, 92–111 (2003)MATHCrossRefGoogle Scholar
  14. 14.
    Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graphical Models and Image Processing 57(6), 453–461 (1995)CrossRefGoogle Scholar
  15. 15.
    Andres, E., Nehlig, P., Françon, J.: Tunnel-free Supercover 3D polygons and polyhedra. Computer Graphics Forum 16(3), 3–14 (1997); Proceedings of Eurographics 1997 (1997) ISSN 1067-7055Google Scholar
  16. 16.
    Maître, H.: Un panorama de la transformation de Hough – a review on Hough transform. Traitement du Signal 2(4), 305–317 (1985)MathSciNetGoogle Scholar
  17. 17.
    Dexet, M., Andrès, É.: Linear discrete line recognition and reconstruction based on a generalized preimage. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 174–188. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    McIlroy, M.D.: A note on discrete representation of lines. AT&T Technical Journal 64(2), 481–490 (1985)Google Scholar
  19. 19.
    Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity - a review. Technical Report CITR-TR-142, Center for Image Technology and Robotics, University of Auckland, New Zealand (2004),
  20. 20.
    Cœurjolly, D., Sivignon, I., Dupont, F., Feschet, F., Chassery, J.M.: On digital plane preimage structure. DAMATH: Discrete Applied Mathematics and Combinatorial Operations Research and Computer Science 151 (2005)Google Scholar
  21. 21.
    Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graphical Models and Image Processing 59(5), 302–309 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martine Dexet
    • 1
  • Eric Andres
    • 1
  1. 1.Laboratoire SICUniversité de PoitiersFuturoscope ChasseneuilFrance

Personalised recommendations