Advertisement

How to Tile by Dominoes the Boundary of a Polycube

  • Olivier Bodini
  • Sandrine Lefranc
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)

Abstract

We prove that the boundary of a polycube (finite union of integer unit cubes) has always a tiling by foldable dominoes (two edge-adjacent unit squares on the boundary). Moreover, the adjacency graph of the unit squares in the boundary of a spherical polycube has a Hamiltonian cycle.

Keywords

Hamiltonian Cycle Connected Subgraph Adjacency Graph Discrete Apply Mathematic Combinatorial Group Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Golomb, S.W.: Tiling with polyominoes. J.C.T. Series A 1, 280–296 (1966)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Krattenthaler, C., Okada, S.: The number of rhombus tilings of a “punctured” hexagon and the minor summation formula. Adv. Appl. Math. 21, 381–404 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Walkup, D.W.: Covering a rectangle with T-tetraminoes. Amer. Math. Monthly 72, 986–988 (1965)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bodini, O., Nouvel, B.: Z-tilings of Polyominoes and Standard Basis. In: ICWIA 2004, pp. 137–150 (2004)Google Scholar
  5. 5.
    Conway, J.H., Lagarias, J.C.: Tiling with polyominoes and combinatorial group theory. JCT Series A 53, 183–208 (1990)MATHMathSciNetGoogle Scholar
  6. 6.
    Chaboud, T.: Pavage par des dominos dans des graphes planaires biréguliers. C. R. Acad. Sci. Paris 318 Série I, 591–594 (1994)MATHMathSciNetGoogle Scholar
  7. 7.
    Kenyon, R.: A note on tiling with integer-sided rectangles. J.C.T. Series A 74, 321–332 (1996)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fournier, J.C.: Tiling pictures of the plane with dominoes. Discrete Mathematics 165/166, 313–320 (1997)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ito, K.: Domino tilings on planar regions. J.C.T. Series A 75, 173–186 (1996)MATHCrossRefGoogle Scholar
  10. 10.
    Thiant, N.: An O(n log n)-algorithm for finding a domino tiling of a plane picture whose number of holes is bounded. Theoretical Computer Science 303(2-3), 353–374 (2003)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rémila, E.: The lattice structure of the set of domino tilings of a polygon. Theoretical Computer Science 322(2), 409–422 (2004)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bodini, O., Latapy, M.: Generalized Tilings with Height Functions. Morfismos 7(3), 47–68 (2003)Google Scholar
  13. 13.
    Tutte, W.T.: A theorem on planar graphs. Trans. Amer. Math. Soc. 82, 99–116 (1956)MATHMathSciNetGoogle Scholar
  14. 14.
    Barnes, F.W.: Best packing of rods into boxes. Discrete Mathematics 142, 271–275 (1995)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Berger, R.: The undecidability of the domino problem. Mem. Amer. Math. Soc. 66 (1966)Google Scholar
  16. 16.
    Bodini, O.: Tiling a Rectangle with Polyominoes. In: DMCS 2003, pp. 89–102 (2003)Google Scholar
  17. 17.
    Bousquet-Mélou, M.: Codage des polyominos convexes et équations pour l’énumération suivant l’aire. Discrete Applied Mathematics 48(1), 21–43 (1994)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Bousquet-Mélou, M.: q-énumération de Polyominos Convexes. J.C.T. Series A 64(2), 265–288 (1993)MATHCrossRefGoogle Scholar
  19. 19.
    Dahlke, K.A.: The Y-hexomino has order 92. J.C.T. Series A 51, 125–126 (1989)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Feretic, S.: A q-enumeration of convex polyominoes by the festoon approach. Theoretical Computer Science 356(1–3), 333–356 (2004)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Golomb, S.W.: Polyominoes which tile rectangles. J.C.T. Series A 51, 117–124 (1989)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kenyon, R.W., Sheffield, S.: Dimers, tilings and trees. J.C.T. Series B 92(2), 295–317 (2004)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Klarner, D.A.: Packing a rectangle with congruent n-ominoes. J.C.T. Series A 7, 107–115 (1969)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Marshall, W.R.: Packing rectangles with congruent polyominoes. J.C.T. Series A 77, 181–192 (1997)MATHCrossRefGoogle Scholar
  25. 25.
    Reid, M.: Tiling rectangles and half strips with congruent polyominoes. J.C.T. Series A 80, 106–123 (1997)MATHCrossRefGoogle Scholar
  26. 26.
    Rhoads, G.C.: Planar tilings by polyominoes, polyhexes, and polyiamonds. Journal of Computational and Applied Mathematics 174(2), 329–353 (2005)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Thurston, W.P.: Conway’s tiling groups. Amer. Math. Monthly 95, 757–773 (1990)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Olivier Bodini
    • 1
  • Sandrine Lefranc
    • 1
  1. 1.LIRMMMontpellierFrance

Personalised recommendations