Skeletonization and Distance Transforms of 3D Volumes Using Graphics Hardware

  • M. A. M. M. van Dortmont
  • H. M. M. van de Wetering
  • A. C. Telea
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)


We propose a fast method for computing distance transforms and skeletons of 3D objects using programmable Graphics Processing Units (GPUs). We use an efficient method, called distance splatting, to compute the distance transform, a one-point feature transform, and 3D skeletons. We efficiently implement 3D splatting on GPUs using 2D textures and a hierarchical bi-level acceleration scheme. We show how to choose near-optimal parameter values to achieve high performance. We show 3D skeletonization and object reconstruction examples and compare our performance with similar state-of-the-art methods.


Feature Point Medial Axis Graphic Hardware Distance Transform Hierarchical Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Blum, H.: A Transformation for Extracting New Descriptors of Shape. In: Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)Google Scholar
  2. 2.
    Gagvani, N., Kenchammana-Hosekote, D., Silver, D.: Volume animation using the skeleton tree. In: Proc. IEEE Volume Visualization, pp. 47–53 (1998)Google Scholar
  3. 3.
    Rumpf, M., Telea, A.: A Continuous Skeletonization Method Based on Level Sets. In: Proc. VisSym, pp. 151–158 (2002)Google Scholar
  4. 4.
    Ogniewicz, R.L., Kübler, O.: Hierarchic Voronoi skeletons. Pattern Recognition 28(3), 343–359 (1995)CrossRefGoogle Scholar
  5. 5.
    Costa, L., Cesar, R.: Shape Analysis and Classification: Theory and Practice. CRC Press Inc., Boca Raton (2000)CrossRefGoogle Scholar
  6. 6.
    Telea, A., van Wijk, J.J.: An Augmented Fast Marching Method for Computing Skeletons and Centerlines. In: Proc. IEEE VisSym, pp. 251–258 (2002)Google Scholar
  7. 7.
    Strzodka, R., Telea, A.: Generalized Distance Transforms and Skeletons in Graphics Hardware. In: Proc. VisSym, pp. 221–230 (2004)Google Scholar
  8. 8.
    Sud, A., Otaduy, M.A., Manocha, D.: DiFi: Fast 3D Distance Field Computation Using Graphics Hardware. Computer Graphics Forum 23(3), 557–566 (2004)CrossRefGoogle Scholar
  9. 9.
    Palágyi, K., Kuba, A.: Directional 3D Thinning Using 8 Subiterations. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 325–336. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Foskey, M., Lin, M.C., Manocha, D.: Efficient Computation of a Simplified Medial Axis. In: Proc. ACM Symp. Solid Modeling, pp. 96–107 (2003)Google Scholar
  11. 11.
    Malandain, G., Fernández-Vidal, S.: Euclidean Skeletons. Image and Vision Computing 16(5), 317–327 (1998)CrossRefGoogle Scholar
  12. 12.
    Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.: Hamilton-Jacobi Skeletons. IJCV 48(3), 215–231 (2002)MATHCrossRefGoogle Scholar
  13. 13.
    Sud, A., Foskey, M., Manocha, D.: Homotopy-Preserving Medial Axis Simplification. In: Proc. ACM Symp. Solid Modeling, pp. 39–50 (2005)Google Scholar
  14. 14.
    Sigg, C., Peikert, R., Gross, M.: Signed Distance Transform Using Graphics Hardware. In: Proc. IEEE Visualization, pp. 83–90 (2003)Google Scholar
  15. 15.
    Pudney, C.: Distance-ordered homotopic thinning: A skeletonization algorithm for 3d digital images. Computer Vision and Image Understanding 72(3), 404–413 (1998)CrossRefGoogle Scholar
  16. 16.
    Reniers, D., Telea, A.: Quantitative comparison of tolerance-based distance transforms. In: Proc. VISAPP 2006, pp. 57–65 (2006)Google Scholar
  17. 17.
    Pharr, M., Fernando, R.: GPU Gems 2: Programming Techniques for High-Performance Graphics. Addison-Wesley, Reading (2005)Google Scholar
  18. 18.
    Aurenhammer, F.: Voronoi diagrams: A survey of a fundamental geometric data structure. SIAM J. Comp. (27), 654–667 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • M. A. M. M. van Dortmont
    • 1
  • H. M. M. van de Wetering
    • 1
  • A. C. Telea
    • 1
  1. 1.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenThe Netherlands

Personalised recommendations