Advertisement

Order Independence in Binary 2D Homotopic Thinning

  • Marcin Iwanowski
  • Pierre Soille
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)

Abstract

This paper investigates binary homotopic 2D thinning in view of its independence of the order of processing image pixels. Pixel removal conditions are provided leading to an order independent thinning. They are introduced for various types of connectivity. Two kinds of pixels to be removed are considered: simple and b-simple. Use of each of those pixels yields to different types of order independent thinnings: homotopic marking and local-SKIZ.

Keywords

Input Image Foreground Pixel Pattern Recognition Letter Pixel Yield Topological Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ranwez, V., Soille, P.: Order independent homotopic thinning. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 337–346. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Ranwez, V., Soille, P.: Order independent homotopic thinning for binary and grey tone anchored skeletons. Pattern Recognition Letters 23(6), 687–702 (2002)MATHCrossRefGoogle Scholar
  3. 3.
    Kong, T., Rosenfeld, A.: Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing 48, 357–393 (1989)CrossRefGoogle Scholar
  4. 4.
    Ronse, C.: A topological characterization of thinning. Theoretical Computer Science 43, 31–41 (1986)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bertrand, J., Everat, J., Couprie, M.: Image segmentation through operators based upon topology. Journal of Electronic Imaging 6(4), 395–405 (1997)CrossRefGoogle Scholar
  6. 6.
    Rosenfeld, A.: Connectivity in digital pictures. Journal of the ACM 17(1), 146–160 (1970)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ronse, C.: Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images. Discrete Applied Mathematics 21, 67–79 (1988)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Berlin (2004)Google Scholar
  9. 9.
    Couprie, M., Bertrand, G.: Tesselations by connection. Pattern Recognition Letters 23, 637–647 (2002)MATHCrossRefGoogle Scholar
  10. 10.
    Rosenfeld, A.: A characterization of parallel thinning algorithms. Information and Control 29, 286–291 (1975)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bertrand, G.: On P-simple points. Comptes Rendus de l’Academie des Sciences, Serie Math. I(321), 1077–1084 (1995)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Marcin Iwanowski
    • 1
  • Pierre Soille
    • 2
  1. 1.Institute of Control and Industrial ElectronicsWarsaw University of TechnologyWarszawaPoland
  2. 2.Joint Research Centre of the European CommissionIspra (VA)Italy

Personalised recommendations