Advertisement

New Removal Operators for Surface Skeletonization

  • Carlo Arcelli
  • Gabriella Sanniti di Baja
  • Luca Serino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)

Abstract

New 3×3×3 operators are introduced to compute the surface skeleton of a 3D object by either sequential or parallel voxel removal. We show that the operators can be employed without creating disconnections, cavities, tunnels and vanishing of object components. A final thinning process, aimed at obtaining a unit-thick surface skeleton, is also described.

Keywords

Removal Operator Object Component Distance Label Central Window Skeletonization Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rosenfeld, A.: A characterization of parallel thinning algorithms. Information and Control 29, 286–291 (1975)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Tsao, Y.F., Fu, K.S.: A parallel thinning algorithm for 3-D pictures. Computer Graphics and Image Processing 17, 315–331 (1981)CrossRefGoogle Scholar
  3. 3.
    Saha, P.K., Chaudhuri, B.B.: Detection of 3D simple points for topology preserving transformations with application to thinning. IEEE Trans. PAMI 16, 1028–1032 (1994)Google Scholar
  4. 4.
    Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple points. Pattern Recognition Letters 15, 169–175 (1994)MATHCrossRefGoogle Scholar
  5. 5.
    Kong, T.Y.: A digital fundamental group. Computers and Graphics 13, 159–166 (1989)CrossRefGoogle Scholar
  6. 6.
    Kong, T.Y., Rosenfeld, A.: Appendix: Digital Topology – A brief introduction and bibliography. In: Kong, T.Y., Rosenfeld, A. (eds.) Topological Algorithms for digital image processing, pp. 263–292. Elsevier, Amsterdam (1996)CrossRefGoogle Scholar
  7. 7.
    Borgefors, G.: On digital distance transform in three dimensions. Computer Vision and Image Understanding 64(3), 368–376 (1996)CrossRefGoogle Scholar
  8. 8.
    Sanniti di Baja, G., Nystrom, I.: Skeletonization in 3D discrete binary images. In: Chen, C.H., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, pp. 137–156. World Scientific, Singapore (2005)CrossRefGoogle Scholar
  9. 9.
    Borgefors, G., Nyström, I., Svensson, S., Sanniti di Baja, G.: Simplification of 3D skeletons using distance information. In: Latecki, L.J., et al. (eds.) Vision Geometry IX, Proc. SPIE, vol. 4117, pp. 300–309 (2000)Google Scholar
  10. 10.
    Hall, R.W.: Parallel connectivity-preserving thinning algorithms. In: Kong, T.Y., Rosenfeld, A. (eds.) Topological Algorithms for digital image processing, pp. 145–179. Elsevier, Amsterdam (1996)CrossRefGoogle Scholar
  11. 11.
    Arcelli, C., Sanniti di Baja, G., Serino, L.: Topology preservation in 3D Internal Report R.I.161/05, Istituto di Cibernetica (December 2005)Google Scholar
  12. 12.
    Eckhardt, U., Latecki, L., Maderlechner, G.: Irreducible and thin binary sets. In: Arcelli, C., et al. (eds.) Aspects of Visual Form Processing, pp. 199–208. World Scientific, Singapore (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Carlo Arcelli
    • 1
  • Gabriella Sanniti di Baja
    • 1
  • Luca Serino
    • 1
  1. 1.Institute of Cybernetics "E.Caianiello"CNRPozzuoli (Naples)Italy

Personalised recommendations