Topologically Correct Image Segmentation Using Alpha Shapes

  • Peer Stelldinger
  • Ullrich Köthe
  • Hans Meine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)


Existing theories on shape digitization impose strong constraints on feasible shapes and require error-free measurements. We use Delaunay triangulation and α-shapes to prove that topologically correct segmentations can be obtained under much more realistic conditions. Our key assumption is that sampling points represent object boundaries with a certain maximum error. Experiments on real and generated images demonstrate the good performance and correctness of the new method.


Delaunay Triangulation Homotopy Type Voronoi Cell Homotopy Equivalent Plane Partition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pavlidis, T.: Algorithms for Graphics and Image Processing. Computer Science Press (1982)Google Scholar
  2. 2.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)MATHGoogle Scholar
  3. 3.
    Latecki, L.J., Conrad, C., Gross, A.: Preserving Topology by a Digitization Process. J. Mathematical Imaging and Vision 8, 131–159 (1998)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Stelldinger, P., Köthe, U.: Towards a General Sampling Theory for Shape Preservation. Image and Vision Computing 23(2), 237–248 (2005)CrossRefGoogle Scholar
  5. 5.
    Stelldinger, P.: Digitization of Non-regular Shapes. In: Ronse, C., Najman, L., Decenciere, E. (eds.) Mathematical Morphology, ISMM (2005)Google Scholar
  6. 6.
    Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Trans. Graphics 13, 43–72 (1994)MATHCrossRefGoogle Scholar
  7. 7.
    Edelsbrunner, H.: The union of balls and its dual shape. Discrete Comput. Geom. 13, 415–440 (1995)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bernardini, F., Bajaj, C.L.: Sampling and Reconstructing Manifolds Using Alpha-Shapes. In: Proc. 9th Canadian Conf. Computational Geometry (1997)Google Scholar
  9. 9.
    Ronse, C., Tajine, M.: Discretization in Hausdorff Space. J. Mathematical Imaging and Vision 12, 219–242 (2000)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Canny, J.: A Computational Approach to Edge Detection. IEEE Trans. Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)CrossRefGoogle Scholar
  11. 11.
    Stelldinger, P., Köthe, U., Meine, H.: Topologically Correct Image Segmentation using Alpha Shapes. University Hamburg, Computer Science Department, Technical Report FBI-HH-M-336/06 (2006)Google Scholar
  12. 12.
    Braquelaire, J.-P., Brun, L.: Image segmentation with topological maps and interpixel representation. J. Visual Communication and Image Repr. 9(1), 62–79 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peer Stelldinger
    • 1
  • Ullrich Köthe
    • 1
  • Hans Meine
    • 1
  1. 1.University of HamburgHamburgGermany

Personalised recommendations