Advertisement

Generalized Map Pyramid for Multi-level 3D Image Segmentation

  • Carine Grasset-Simon
  • Guillaume Damiand
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)

Abstract

Graph pyramids are often used to represent an image with various levels of details. Generalized pyramids have been recently defined in order to deal with images in any dimension. In this work, we show how to use generalized pyramids to represent 3D multi-level segmented images. We show how to construct such a pyramid, by alternating segmentation and simplification steps. We present how cells to be removed are marked: by using an homogeneous criterion to mark faces and the cell degree to mark other cells. When the pyramid is constructed, the main problem consists in retrieving information on regions. In this work, we show how to retrieve two types of information. The first one is the low level cells that are merged into a unique high level cell. The second one is the inter-voxel cells that compose a given region.

Keywords

Irregular image pyramid Inter-voxel elements Generalized map Hierarchical segmentation 

References

  1. 1.
    Brice, C., Fennema, C.: Scene analysis using regions. Artificial Intelligence 1(3-4), 205–226 (1970)CrossRefGoogle Scholar
  2. 2.
    Fiorio, C., Gustedt, J.: Two linear time union-find strategies for image processing. Theoretical Computer Science A: 154(2), 165–181 (1996)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Lee, C.: Recursive region splitting at hierarchial scope views. Computer Vision, Graphics, and Image Processing 33(2), 237–258 (1986)CrossRefGoogle Scholar
  4. 4.
    Ohlander, R., Price, K., Reddy, R.: Picture segmentation by a recursive region splitting method. Computer Graphics and Image Processing 8, 313–333 (1978)CrossRefGoogle Scholar
  5. 5.
    Pietikainen, M., Rosenfeld, A., Walter, I.: Split-and-link algorithms for image segmentation. Pattern Recognition 15(4), 287–298 (1982)CrossRefGoogle Scholar
  6. 6.
    Cheevasuvit, F., Maitre, H., Vidal-Madjar, D.: A robust method for picture segmentation based on a split-and-merge procedure. Computer Vision, Graphics, and Image Processing 34(3), 268–281 (1986)CrossRefGoogle Scholar
  7. 7.
    Braquelaire, J., Brun, L.: Image segmentation with topological maps and interpixel representation. Journal of Visual Communication and Image Representation 9(1), 62–79 (1998)CrossRefGoogle Scholar
  8. 8.
    Damiand, G., Bertrand, Y., Fiorio, C.: Topological model for two-dimensional image representation: definition and optimal extraction algorithm. Computer Vision and Image Understanding 93(2), 111–154 (2004)CrossRefGoogle Scholar
  9. 9.
    Montanvert, A., Meer, P., Rosenfeld, A.: Hierarchical image analysis using irregular tessellations. PAMI 13(4), 307–316 (1991)Google Scholar
  10. 10.
    Kropatsch, W., Macho, H.: Finding the structure of connected components using dual irregular pyramids. In: Discrete Geometry for Computer Imagery, Clermont-Ferrand, France, pp. 147–158 (1995)Google Scholar
  11. 11.
    Grasset-Simon, C., Damiand, G., Lienhardt, P.: Pyramids of n-dimensional generalized maps. In: Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 142–152. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Grasset-Simon, C., Damiand, G., Lienhardt, P.: Receptive fields for generalized map pyramids: The notion of generalized orbit. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 56–67. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-manifolds. International Journal of Computational Geometry and Applications, 275–324 (1994)Google Scholar
  14. 14.
    Damiand, G., Lienhardt, P.: Removal and contraction for n-dimensional generalized maps. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 408–419. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Kropatsch, W.: Building irregular pyramids by dual-graph contraction. IEE Proceedings Vision, Image and Signal Processing 142(6), 366–374 (1995)CrossRefGoogle Scholar
  16. 16.
    Brun, L., Kropatsch, W.G.: Receptive fields within the combinatorial pyramid framework. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 92–101. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Simon, C., Damiand, G., Lienhardt, P.: nd generalized map pyramids: definition, representations and basic operations. Pattern Recognition 39(4), 527–538 (2006)zbMATHCrossRefGoogle Scholar
  18. 18.
    Damiand, G.: Définition et étude d’un modèle topologique minimal de repré-sentation d’images 2d et 3d. Phd thesis, Université Montpellier II, France (2001)Google Scholar
  19. 19.
    Damiand, G., Resch, P.: Split and merge algorithms defined on topological maps for 3d image segmentation. Graphical Models 65(1-3), 149–167 (2003)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Carine Grasset-Simon
    • 1
  • Guillaume Damiand
    • 1
  1. 1.SIC – Université de Poitiers, bât. SP2MIFuturoscope ChasseneuilFrance

Personalised recommendations