Advertisement

Fuzzy Segmentation of Color Video Shots

  • Bruno M. Carvalho
  • Lucas M. Oliveira
  • Gilbran S. Andrade
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)

Abstract

Fuzzy segmentation is a region growing technique that assigns a grade of membership to an object to each element in an image. In this paper we present a method for segmenting video shots by using a fast implementation of the fuzzy segmentation technique. The video shot is treated as a three-dimensional volume with different z slices being occupied by different frames of the video shot. The volume is interactively segmented based on selected seed elements, that will determine the affinity functions based on their intensity and color properties. Experiments with a synthetic video under different noise conditions are performed, as well as examples of two real video shot segmentations are presented, showing the applicability of our method.

Keywords

Video Sequence Temporal Coherence Video Shot Fast Implementation 20th Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Udupa, J., Samarasekera, S.: Fuzzy connectedness and object definition: Theory, algorithms and applications in image segmentation. Graph. Models Image Proc. 58, 246–261 (1996)CrossRefGoogle Scholar
  2. 2.
    Herman, G., Carvalho, B.: Multiseeded segmentation using fuzzy conectedness. IEEE Trans. on Pattern Anal. Mach. Intell. 23, 460–474 (2001)CrossRefGoogle Scholar
  3. 3.
    Carvalho, B., Herman, G., Kong, T.: Simultaneous fuzzy segmentation of multiple objects. Disc. Appl. Math. 151, 55–77 (2005)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hertzmann, A., Perlin, K.: Painterly rendering for video and interaction. In: Proc. ACM Non-Photorealistic Animation and Rendering (NPAR), pp. 7–12 (2000)Google Scholar
  5. 5.
    Litwinowicz, P.: Processing images and video for an impressionist effect. In: Proc. ACM SIGGRAPH, pp. 407–414 (1997)Google Scholar
  6. 6.
    Collomosse, J., Rowntree, D., Hall, P.: Stroke surfaces: Temporally coherent artistic animations from video. IEEE Trans. Visualiz. and Comp. Graph 11, 540–549 (2005)CrossRefGoogle Scholar
  7. 7.
    Wang, J., Xu, Y., Shum, H.Y., Cohen, M.: Video tooning. ACM Trans. on Graph. 23, 574–583 (2004)CrossRefGoogle Scholar
  8. 8.
    Rosenfeld, A.: Fuzzy digital topology. Inform. and Control 40, 76–87 (1979)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Carvalho, B., Gau, C., Herman, G., Kong, T.: Algorithms for fuzzy segmentation. Pattern Anal. Appl. 2, 73–81 (1999)CrossRefGoogle Scholar
  10. 10.
    Carvalho, B.M., Garduño, E., Herman, G.T.: Multiseeded fuzzy segmentation on the face centered cubic grid. In: Singh, S., Murshed, N., Kropatsch, W.G. (eds.) ICAPR 2001. LNCS, vol. 2013, pp. 339–348. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Zahn, C.: Graph-theoretic methods for detecting and describing Gestalt clusters. IEEE Trans. Comp. 1, 68–86 (1971)CrossRefGoogle Scholar
  12. 12.
    Duda, R., Hart, P.: Pattern Classification and Scene Analysis. John Wiley & Sons, New York (1973)MATHGoogle Scholar
  13. 13.
    Jain, A., Murty, M., Flynn, P.: Data clustering: a review. ACM Comput. Surveys 31, 264–323 (1999)CrossRefGoogle Scholar
  14. 14.
    Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT Press, Cambridge (1990)MATHGoogle Scholar
  15. 15.
    Nyul, L., Falcão, A., Udupa, J.: Fuzzy-connected 3D image segmentation at interactive speeds. Graph. Models 64, 259–281 (2002)MATHCrossRefGoogle Scholar
  16. 16.
    Computer Vision Homepage: University of Otago (2006), Available at: http://www.cs.otago.ac.nz/research/vision/Research/OpticalFlow/opticalflow.html
  17. 17.
    Galun, M., Apartsin, A., Basri, R.: Multiscale segmentation by combining motion and intensity cues. In: Proc. IEEE Comp. Soc. Conf. on Comp. Vision and Patt. Recog., pp. 256–263 (2005)Google Scholar
  18. 18.
    Khan, S., Shah, M.: Object based segmentation of video using color, motion and spatial information. In: IEEE Comp. Soc. Conf. on Comp. Vision and Patt. Recog., vol. 2, pp. 746–751 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bruno M. Carvalho
    • 1
  • Lucas M. Oliveira
    • 1
  • Gilbran S. Andrade
    • 1
  1. 1.Departamento de Informática e Matemática AplicadaUniversidade Federal do Rio Grande do NorteNatalBrazil

Personalised recommendations