Fast Polynomial Segmentation of Digitized Curves

  • Peter Veelaert
  • Kristof Teelen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)


We propose a linear-time algorithm for curve segmentation which is based on constructive polynomial fitting. This work extends previous work on constructive fitting by taking the topological properties of a digitized curve into account. The algorithm uses uniform (or L  ∞ ) fitting and it works for segments of arbitrary thickness. We illustrate the algorithm with the segmentation of contours into straight and parabolic segments.


Pattern Anal Variable Order Curve Segment Incremental Algorithm Topological Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lachaud, J.-O., Vialard, A., de Vieilleville, F.: Analysis and Comparative Evaluation of Discrete Tangent Estimators. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 240–251. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Coeurjolly, D., Klette, R.: Comparative evaluation of length estimators of digital curves. IEEE Trans. Pattern Anal. Machine Intell. 26, 252–258 (2004)CrossRefGoogle Scholar
  3. 3.
    Smeulders, A., Dorst, L.: Decomposition of discrete curves into piecewise straight segments in linear time. In: Melter, R.A., Rosenfeld, A., Bhattacharya, P. (eds.) Vision Geometry, American Mathematical Society. Contemporary Mathematics Series, vol. 119, pp. 169–195 (1991)Google Scholar
  4. 4.
    Debled-Renesson, I., Reveilles, J.-P.: A linear algorithm for segmentation of discrete curves. International Journal of Pattern Recognition and Artificial Intelligence 9, 635–662 (1995)CrossRefGoogle Scholar
  5. 5.
    Buzer, L.: An elementary algorithm for digital line recognition in the general case. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 299–310. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Leclerc, Y., Zucker, S.: The local structure of image discontinuities in one dimension. IEEE Trans. Pattern Anal. Machine Intell. 9, 341–355 (1987)CrossRefGoogle Scholar
  7. 7.
    Dunham, J.: Optimum uniform piecewise linear approximation of planar curves. IEEE Trans. Pattern Anal. Machine Intell. 8, 67–75 (1986)CrossRefGoogle Scholar
  8. 8.
    Rosin, P., West, G.: Nonparametric segmentation of curves into various representations. IEEE Trans. Pattern Anal. Machine Intell. 17, 1140–1153 (1995)CrossRefGoogle Scholar
  9. 9.
    Boyer, K., Mirza, M., Ganguly, G.: The robust sequential estimator: A general approach and its application to surface organization in range data. IEEE Trans. Pattern Anal. Machine Intell. 16, 987–1001 (1994)CrossRefGoogle Scholar
  10. 10.
    Besl, P., Jain, R.: Segmentation through variable-order surface fitting. IEEE Trans. Pattern Anal. Machine Intell. 10, 167–192 (1988)CrossRefGoogle Scholar
  11. 11.
    Cooper, D., Yalabik, N.: On the computational cost of approximating and recognizing noise-perturbed straight lines and quadratic arcs in the plane. IEEE Trans. Comput. 25, 1020–1032 (1976)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Taubin, G.: Estimation of planar curves, surfaces and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Machine Intell. 13, 1115–1138 (1991)CrossRefGoogle Scholar
  13. 13.
    Veelaert, P.: Linear-time algorithms for region growing with applications to image and curve segmentation. In: Proceedings of the SPIE conference on Vision Geometry VI, vol. 3168, pp. 76–87 (1997)Google Scholar
  14. 14.
    Veelaert, P.: Constructive fitting and extraction of geometric primitives. CVGIP: Graphical Models and Image Processing 59, 233–251 (1997)CrossRefGoogle Scholar
  15. 15.
    Stromberg, A.: Computing the exact least median of squares estimate and stability diagnostics in multiple linear regression. SIAM J. Sci. Comput. 14, 1289–1299 (1993)MATHCrossRefGoogle Scholar
  16. 16.
    Veelaert, P.: On the flatness of digital hyperplanes. J. Math. Imaging and Vision 3, 205–221 (1993)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Teelen, K., Veelaert, P.: Improving difference operators by local feature detection. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 391–402. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peter Veelaert
    • 1
  • Kristof Teelen
    • 1
  1. 1.Member of Association University GhentUniversity College GhentBelgium

Personalised recommendations