Topological and Geometrical Reconstruction of Complex Objects on Irregular Isothetic Grids

  • Antoine Vacavant
  • David Coeurjolly
  • Laure Tougne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)


In this paper, we address the problem of vectorization of binary images on irregular isothetic grids. The representation of graphical elements by lines is common in document analysis, where images are digitized on (sometimes very-large scale) regular grids. Regardless of final application, we propose to first describe the topology of an irregular two-dimensional object with its associated Reeb graph, and we recode it with simple irregular discrete arcs. The second phase of our algorithm consists of a polygonal reconstruction of this object, with discrete lines through the elementary arcs computed in the previous stage. We also illustrate the robustness of our method, and discuss applications and improvements.


Complex Object Height Function Euler Number Reeb Graph Discrete Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Samet, H.: The quadtree and related hierarchical data structures. ACM Computer Survey 16(2), 187–260 (1984)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Samet, H.: Hierarchical spatial data structures. In: Buchmann, A., Smith, T.R., Wang, Y.-F., Günther, O. (eds.) SSD 1989. LNCS, vol. 409, pp. 193–212. Springer, Heidelberg (1990)Google Scholar
  3. 3.
    Coeurjolly, D.: Supercover Model and Digital Straight Line Recognition on Irregular Isothetic Grids. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 311–322. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Reeb, G.: Surles points singuliers d’une forme de Pfaff complément intégrable ou d’une fonction numérique. Comptes Rendus de L’Académie ses Séances 222, 847–849 (1946)MATHMathSciNetGoogle Scholar
  5. 5.
    de Figueiredo, L.H., Van Iwaarden, R., Stolfi, J.: Fast interval branch-and-bound methods for unconstrained global optimization with affine arithmetic. Technical Report IC-9708, Institute of Computing, Univ. of Campinas (June 1997)Google Scholar
  6. 6.
    Kearfott, B.: Interval computations: introduction, uses, and resources. Euromath Bulletin 2(1), 95–112 (1996)MathSciNetGoogle Scholar
  7. 7.
    Snyder, J.M.: Interval analysis for computer graphics. Computer Graphics 26(2), 121–130 (1992)CrossRefGoogle Scholar
  8. 8.
    Cordella, L.P., Vento, M.: Symbol recognition in documents: a collection of techniques? International Journal on Document Analysis and Recognition 3(2), 73–88 (2000)CrossRefGoogle Scholar
  9. 9.
    Hilaire, X., Tombre, K.: Robust and accurate vectorization of line drawings. IEEE Transactions on Pattern Analysis and Machine Intelligence (2005)Google Scholar
  10. 10.
    Mertzios, B.G., Karras, D.A.: On applying fast and efficient methods in pattern recognition. In: Byrnes, J.S. (ed.) Signal Processing for Multimedia, IOS Press, Amsterdam (1999)Google Scholar
  11. 11.
    Wenyin, L., Dori, D.: From raster to vectors: extracting visual information from line drawings. Pattern Analysis and Application 2(1), 10–21 (1999)MATHCrossRefGoogle Scholar
  12. 12.
    Burge, M., Kropatsch, W.G.: A minimal line property preserving representation of lines images. Computing 62, 355–368 (1999)MATHCrossRefGoogle Scholar
  13. 13.
    Elgammal, A., Ismail, M.A.: Graph-based segmentation and feature-extraction framework for arabic text recognition. In: 6th International Conference on Document Analysis and Recognition (ICDAR 2001), Seattle, Washington, USA, September 10–13 (2001)Google Scholar
  14. 14.
    Soille, P.: Morphological image analysis, 2nd edn. Springer, Berlin (2003)MATHGoogle Scholar
  15. 15.
    Lam, L., Lee, S.W., Suen, C.Y.: Thinning methodologies - a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(9), 869–885 (1992)CrossRefGoogle Scholar
  16. 16.
    Wenyin, L., Dori, D.: A Survey of non-thinning based vectorization methods. In: Amin, A., Pudil, P., Dori, D. (eds.) SPR 1998 and SSPR 1998. LNCS, vol. 1451, pp. 230–241. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Klette, R., Rosenfeld, A.: Digital geometry. Elsevier, Amsterdam (2004)MATHGoogle Scholar
  18. 18.
    Debled, I., Reveillès, J.P.: A linear algorithm for segmentation of digital curves. In: Third International Workshop on Parallel Image Analysis (June 1994)Google Scholar
  19. 19.
    Debled, I., Tabbone, S., Wendling, L.: Fast polygonal approximation of digital curves. In: International Conference on Pattern Recognition, Cambridge, United Kingdom, vol. 1 (August 2004)Google Scholar
  20. 20.
    Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition in linear time. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 371–382. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Coeurjolly, D., Zerarga, L.: Supercover model, digital straight line recognition and curve reconstruction on the irregular isothetic grids. Computer and Graphics 30(1), 46–53 (2006)CrossRefGoogle Scholar
  22. 22.
    Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graphical models and image processing: GIMP 57(6), 453–461 (1995)CrossRefGoogle Scholar
  23. 23.
    Sivignon, I., Breton, R., Dupont, F., Andres, E.: Discrete analytical curve reconstruction without patches. Image and Vision Computing 23(2), 191–202 (2005)CrossRefGoogle Scholar
  24. 24.
    Gramain, A.: Topologie des surfaces. In: Presses Universitaires Françaises (1971)Google Scholar
  25. 25.
    Hart, J.C.: Computational topology for shape modeling. In: Shape Modeling International SMI 1999, March 1–4, pp. 36–43. IEEE Computer Society, Aizu, Japan (1999)Google Scholar
  26. 26.
    Hétroy, F.: Méthodes de partitionnement de surfaces. PhD thesis, Institut National Polytechnique de Grenoble, Grenoble, France (September 2003)Google Scholar
  27. 27.
    Tung, T.: Indexation 3D de bases de données d’objets 3D par graphes de Reeb améliorés. PhD thesis, Telecom Paris, ENST/TIC, Paris, France (June 2005)Google Scholar
  28. 28.
    Xiao, Y., Siebert, P., Werghi, N.: A discrete Reeb graph approach for the segmentation of human body scans. In: 4th International Conference on 3D Digital Imaging and Modeling, Banff, Canada, October 6–10, 2003, pp. 385–387 (2003)Google Scholar
  29. 29.
    Breton, R.: Reconstruction inversible d’objets discrets 2D. PhD thesis, Université de Poitiers, Poitiers, France (December 2003)Google Scholar
  30. 30.
    Wenyin, L., Dori, D.: A protocol for performance evaluation of line detection algorithms. Machine Vision and Applications 9(5/6), 240–250 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Antoine Vacavant
    • 1
  • David Coeurjolly
    • 2
  • Laure Tougne
    • 1
  1. 1.LIRIS – UMR 5205, Université Lumière Lyon 2BronFrance
  2. 2.LIRIS – UMR 5205, Université Claude Bernard Lyon 1VilleurbanneFrance

Personalised recommendations