Advertisement

Arithmetic Discrete Hyperspheres and Separatingness

  • Christophe Fiorio
  • Jean-Luc Toutant
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)

Abstract

In the framework of the arithmetic discrete geometry, a discrete object is provided with its own analytical definition corresponding to a discretization scheme. It can thus be considered as the equivalent, in a discrete space, of a Euclidean object. Linear objects, namely lines and hyperplanes, have been widely studied under this assumption and are now deeply understood. This is not the case for discrete circles and hyperspheres for which no satisfactory definition exists. In the present paper, we try to fill this gap. Our main results are a general definition of discrete hyperspheres and the characterization of the k-minimal ones thanks to an arithmetic definition based on a non-constant thickness function. To reach such topological properties, we link adjacency and separatingness with norms.

Keywords

Topological Property Discrete Space Linear Object Thickness Function Discrete Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bresenham, J.: Algorithm for computer control of a digital plotter. IBM Systems Journal 4(1), 25–30 (1965)CrossRefGoogle Scholar
  2. 2.
    Freeman, H.: Computer processing of line-drawing images. ACM Computing Surveys 6(1), 57–97 (1974)MATHCrossRefGoogle Scholar
  3. 3.
    Rosenfeld, A.: Digital straight lines segments. IEEE Transactions on Computers, 1264–1369 (1974)Google Scholar
  4. 4.
    Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’Etat, Université Louis Pasteur, Strasbourg (1991)Google Scholar
  5. 5.
    Debled-Rennesson, I., Reveillès, J.P.: A linear algorithm for segmentation of digital curves. IJPRAI 9(4), 635–662 (1995)Google Scholar
  6. 6.
    Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. CVGIP: Graphical Models and Image Processing 59(5), 302–309 (1997)CrossRefGoogle Scholar
  7. 7.
    Bresenham, J.: A linear algorithm for incremental digital display of circular arcs. Communication of the ACM 20(2), 100–106 (1977)MATHCrossRefGoogle Scholar
  8. 8.
    McIlroy, M.D.: Best approximate circles on integer grids. ACM Transactions on Graphics 2(4), 237–263 (1983)MATHCrossRefGoogle Scholar
  9. 9.
    Pham, S.: Digital circles with non-lattice point centers. The Visual Computer 9(1), 1–24 (1992)CrossRefGoogle Scholar
  10. 10.
    Andres, E., Jacob, M.A.: The discrete analytical hyperspheres. IEEE Transactions on Visualization and Computer Graphics 3(1), 75–86 (1997)CrossRefGoogle Scholar
  11. 11.
    Fiorio, C., Jamet, D., Toutant, J.L.: Discrete circles: an arithmetical approach with non-constant thickness. In: Vision Geometry XIV, Electronic Imaging, SPIE, San Jose (CA), USA (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christophe Fiorio
    • 1
  • Jean-Luc Toutant
    • 1
  1. 1.LIRMM – CNRS UMR 5506 – Université de Montpellier IIMontpellierFrance

Personalised recommendations