Advertisement

On Discrete Moments of Unbounded Order

  • Reinhard Klette
  • Joviša Žunić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)

Abstract

Moment-based procedures are commonly used in computer vision, image analysis, or pattern recognition. Basic shape features such as size, position, orientation, or elongation are estimated by moments of order ≤2. Shape invariants are defined by higher order moments. In contrast to a theory of moments in continuous mathematics, shape moments in imaging have to be estimated from digitized data. Infinitely many different shapes in Euclidean space are represented by an identical digital shape. There is an inherent loss of information, impacting moment estimation.

This paper discusses accuracy limitations in moment reconstruction in dependency of order of reconstructed moments and applied resolution of digital pictures. We consider moments of arbitrary order, which is not assumed to be bounded by a constant.

Keywords

moments discrete moments accuracy of estimation multigrid convergence digital shapes 

References

  1. 1.
    Hu, M.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory. 8, 179–187 (1962)Google Scholar
  2. 2.
    Dudani, S.A., Breeding, K.J., McGhee, R.B.: Aircraft identification by moment invariants. IEEE Trans. Comp. 26, 39–46 (1977)CrossRefGoogle Scholar
  3. 3.
    Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill, New York (1995)Google Scholar
  4. 4.
    Pei, S.-C., Liou, L.-G.: Using moments to acquire the motion parameters of a deformable object without correspondence. Image Vision Computing 12, 475–485 (1994)CrossRefGoogle Scholar
  5. 5.
    Tsai, W.H., Chou, S.L.: Detection of generalized principal axes in rotationally symmetric shapes. Pattern Recognition 24, 95–104 (1991)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  7. 7.
    Klette, R., Žunić, J.: Multigrid convergence of calculated features in image analysis. J. Mathematical Imaging Vision. 13, 173–191 (2000)zbMATHCrossRefGoogle Scholar
  8. 8.
    Davenport, H.: On a principle of Lipschitz. J. London Math. Soc. 26, 179–183 (1951)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Huxley, M.N.: Exponential sums and lattice points III. Proc. London Math. Soc. 87, 591–609 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jiang, X.Y., Bunke, H.: Simple and fast computation of moments. Pattern Recognition 24, 801–806 (1991)CrossRefGoogle Scholar
  11. 11.
    Leu, J.-G.: Computing a shape’s moments from its frontier. Pattern Recognition 24, 949–957 (1991)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Singer, M.H.: A general approach to moment calculation for polygons and line segments. Pattern Recognition 26, 1019–1028 (1993)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Reinhard Klette
    • 1
  • Joviša Žunić
    • 2
  1. 1.Computer ScienceThe University of AucklandAucklandNew Zealand
  2. 2.Computer ScienceExeter UniversityExeterUK

Personalised recommendations