A Generic Approach for n-Dimensional Digital Lines

  • Fabien Feschet
  • Jean-Pierre Reveillès
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)


In this paper, we provide an unified view of two definitions of digital lines in 3D via the use of lattice theory and specific projections of the lattice ℤ3. We use this unified vision to explain the extension of the definition of Voss [1] to an arbitrary dimension and we show how to extend the definition of Figueiredo and Reveillès [2] to an arbitrary dimension.


Direction Vector Arbitrary Dimension Lattice Theory Fundamental Domain Integer Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Voss, K.: Discrete Images, Objects and Functions in ℤn. Springer, Heidelberg (1993)Google Scholar
  2. 2.
    Figueiredo, O., Reveillès, J.P.: New results about 3D digital lines. In: Melter, R.A., Wu, A.Y., Latecki, L. (eds.) Vision Geometry V., vol. 2826, pp. 98–108 (1996)Google Scholar
  3. 3.
    Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)MATHGoogle Scholar
  4. 4.
    Kim, C.: Three-dimensional digital line segments. IEEE Trans. Pattern Analysis and Machine Intelligence 5, 231–234 (1983)MATHCrossRefGoogle Scholar
  5. 5.
    Debled-Rennesson, I.: Etude et reconnaissance des droites et plans discrets. Ph.D thesis, Université Louis Pasteur - Strasbourg (1995)Google Scholar
  6. 6.
    Coeurjolly, D., Debled-Rennesson, I., Teytaud, O.: Segmentation and Length Estimation of 3D Discrete Curves. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 299–317. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’etat, Université Louis Pasteur, Strasbourg (1991)Google Scholar
  8. 8.
    Figueiredo, O., Reveillès, J.P.: A contribution to 3D digital lines. In: Proc. Discrete Geometry for Computer Imagery, Université d’Auvergne - LLAIC, pp. 187–198 (1995)Google Scholar
  9. 9.
    Ibanez, L., Hamitouche, C., Roux, C.: A Vectorial Algorithm for Tracing Discrete Straight Lines in N-Dimensional Generalized Grids. IEEE Trans. Vis. Comput. Graph. 7(2), 97–108 (2001)CrossRefGoogle Scholar
  10. 10.
    Klette, R.: The m-dimensional grid point space. Computer Vision, Graphics, and Image Processing 30, 1–12 (1985)CrossRefGoogle Scholar
  11. 11.
    Stojmenovic, I., Tosic, R.: Digitization Schemes and the Recognition of Digital Straight Lines, Hyperplanes, and Flats in Arbitrary Dimensions. Contemporary Mathematics 119, 197–212 (1991)MathSciNetGoogle Scholar
  12. 12.
    Reveillès, J.P.: The Geometry of the Intersection of Voxel Spaces. In: Fourey, S., Herman, G.T., Kong, T.Y. (eds.) IWCIA 2001. Electronic Notes in Theoretical Computer Science, vol. 46, pp. 1–24. Elsevier, Amsterdam (2001)Google Scholar
  13. 13.
    Debled, I., Reveillès, J.P.: A linear algorithm for segmentation of digital curves. In: 3rd IWPIA (1994)Google Scholar
  14. 14.
    Arnold, V.: Higher dimensional Continued Fractions. Regular and Chaotics Dynamics 33, 10–17 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Fabien Feschet
    • 1
  • Jean-Pierre Reveillès
    • 1
  1. 1.LAIC LaboratoryIUT Clermont-FerrandAubièreFrance

Personalised recommendations