Advertisement

Elliptical Distance Transforms and Applications

  • Hugues Talbot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)

Abstract

Discrete Euclidean distance transforms, both exact and approximate, have been studied for some time, in particular by the Discrete Geometry community.

In this paper we extend the notion of Euclidean distance transform (EDT) to elliptical distance transform (LDT). The LDT takes an additional two fixed parameters (eccentricity and orientation) in 2-D and an additional four in 3-D (two ratios and two angles) in 3-D, instead of 1 for the EDT in all cases . We study first how the LDT can be computed efficiently with good approximation in the case where all parameters are constant.

We provide an application to binary object segmentation as motivation for this work.

Keywords

Binary Image Level Line Priority Queue Mathematical Morphology Distance Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rosenfeld, A., Pfaltz, J.: Distance functions on digital pictures. Pattern Recognition 1, 33–61 (1968)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Borgefors, G.: Distance transformations in arbitrary dimensions. Computer Vision, Graphics, and Image Processing 27, 321–345 (1984)CrossRefGoogle Scholar
  3. 3.
    Rosenfeld, A., Pfaltz, J.: Sequential operations in digital picture processing. J. Assoc. Comp. Mach. 13(4), 471–494 (1966)MATHGoogle Scholar
  4. 4.
    Calabi, L., Hartnett, W.: Shape recognition prairie fires, convex deficiencies and skeletons. American Mathematical Monthly 75(4) (1968)Google Scholar
  5. 5.
    Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics, and Image Processing 34, 344–371 (1986)CrossRefGoogle Scholar
  6. 6.
    Montanari, U.: A method for obtaining skeletons using a quasi-euclidean distance. J. Assoc. Comp. Mach. 15, 600–624 (1968)Google Scholar
  7. 7.
    Danielsson, P.E.: Euclidean distance mapping. Computer Graphics and Image Processing 14, 227–248 (1980)CrossRefGoogle Scholar
  8. 8.
    Vincent, L.: Exact euclidean distance function by chain propagations. In: CVPR, Maui, Hawaii, pp. 520–525. IEEE, Los Alamitos (1991)Google Scholar
  9. 9.
    Cuisenaire, O., Macq, B.: Fast euclidean distance transform by propagation using multiple neighborhoods. Computer Vision and Image Understanding 76(2), 163–172 (1994)CrossRefGoogle Scholar
  10. 10.
    Breu, H., Gil, J., Kirkpatrick, D., Werman, M.: Linear time distance transform algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(5), 529–533 (1995)CrossRefGoogle Scholar
  11. 11.
    Mehnert, A., Jackway, P.: On computing the exact euclidean distance transform on rectangular and hexagonal grids. Journal of Mathematical Imaging and Vision 11(3), 223–230 (1999)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Talbot, H., Appleton, B.: Elliptical distance transforms and the object splitting problem. In: Talbot, H., Beare, R. (eds.) Mathematical Morphology, Proceedings of the 6th international symposium, Sydney, Australia, pp. 229–240. CSIRO Publishing (2002)Google Scholar
  13. 13.
    Rutovitz, D.: Data structures for operations on digital images. In: Cheng, G., Ledley, R., Pollok, D., Rosenfel, A. (eds.) Pictorial Pattern Recognition, WA, Thomson Book, pp. 105–133 (1968)Google Scholar
  14. 14.
    Dijkstra, E.: A note on two problems in connexion with graph. Numerische Mathematik 1, 269–271 (1959)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Beardon, A.: The Geometry of Discrete Groups. Graduate texts in Mathematics. Springer, Heidelberg (1983)MATHGoogle Scholar
  16. 16.
    Sethian, J.: Fast marching methods. SIAM review 41(2), 199–235 (1999)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations. In: Proc. Nat. Acad. Sciences, vol. 98(20), pp. 11069–11074 (2002)Google Scholar
  18. 18.
    Serra, J.: Image analysis and mathematical morphology. Academic Press, London (1982)MATHGoogle Scholar
  19. 19.
    Soille, P.: Spatial distributions from contour lines: an efficient methodology based on distance transformations. Journal of Visual Communication and Image Representation 2(2), 138–150 (1991)CrossRefGoogle Scholar
  20. 20.
    Talbot, H., Appleton, B.C.: Elliptical distance transforms and object splitting. In: Talbot, H., Beare, R. (eds.) Mathematical Morphology: Proceedings of the VIth International Symposium, pp. 229–240. CSIRO publishing (2002)Google Scholar
  21. 21.
    Ragnemalm, I.: The euclidean distance transform in arbitrary dimensions. Pattern Recognition Letters 14(11), 883–888 (1993)MATHCrossRefGoogle Scholar
  22. 22.
    Lantuéjoul, C.: Skeletonization in quantitative metallography. In: Haralick, R.M., Simon, J.C. (eds.) Issues of Digital Image Procesing, NATO, Sijthoff and Noordhoff (1980)Google Scholar
  23. 23.
    Beucher, S., Vincent, L.: Introduction aux outils morphologiques de segmentation. In: Traitement d’image en microscopie à balayage et en microanalyse par sonde électronique, Paris, ANRT, groupement microanalyse et MEB, pp. F1–F43 (1990)Google Scholar
  24. 24.
    Talbot, H., Terol Villalobos, I.: Binary image segmentation using weighted skeletons. In: Image algebra and morphological image processing III, San Diego, CA, SPIE, vol. 1769, pp. 147–155 (1992)Google Scholar
  25. 25.
    Meyer, F.: Cytologie quantitative et morphologie mathématique. PhD thesis, Ecole des Mines de Paris (1979)Google Scholar
  26. 26.
    Talbot, H., Vincent, L.: Euclidean skeleton and conditional bisectors. In: Visual Communications and Image Processing 1992, Boston, SPIE, vol. 1818, pp. 862–873 (1992)Google Scholar
  27. 27.
    Couprie, M., Zrour, R.: Discrete bisector function and euclidean skeleton. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 216–227. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Talbot, H.: Analyse morphologique de fibres minérales d’isolation. PhD thesis, Ecole des Mines de Paris (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hugues Talbot
    • 1
  1. 1.A2SI-ESIEE / IGMNoisy-le-GrandFrance

Personalised recommendations