Hierarchical Chamfer Matching Based on Propagation of Gradient Strengths

  • Stina Svensson
  • Ida-Maria Sintorn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)


A modification of the hierarchical chamfer matching algorithm (HCMA) with the effect that no binarisation of the edge information is performed is investigated. HCMA is a template matching algorithm used in many applications. A distance transform (DT) from binarised edges in the search image is used to guide the template to good positions. Local minima of a function using the distance values hit by the template correspond to potential matches. We propose to use distance weighted propagation of gradient magnitude information as a cost image instead of a DT from the edges. By this we keep as much information as possible until later in the matching process and, hence, do not risk to discard good matches in the edge detection and binarisation process.


Root Mean Square Template Match Edge Image Search Image Gradient Magnitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barrow, H.G., Tenenbaum, J.M., Bolles, R.C., Wolf, H.C.: Parametric correspondence and chamfer matching: two new techniques for image matching. In: Proc. 5th International Joint Conf. on Artificial Intelligens, Cambridge, USA, pp. 659–663 (1977)Google Scholar
  2. 2.
    Borgefors, G.: An improved version of the chamfer matching algorithm. In: 7th International Conference of Pattern Recognition, Montreal, pp. 1175–1177 (1984)Google Scholar
  3. 3.
    Borgefors, G.: Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(6), 849–865 (1988)CrossRefGoogle Scholar
  4. 4.
    Ding, L., Goshtasby, A., Satter, M.: Volume image registration by template matching. Image and Vision Computing 19, 821–832 (2001)CrossRefGoogle Scholar
  5. 5.
    Zitová, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 21, 977–1000 (2003)CrossRefGoogle Scholar
  6. 6.
    Mäkelä, T., Pham, Q.C., Clarysse, P., Nenonen, J., Lötjönen, J., Sipilä, O., Hänninen, H., Lauerma, K., Kirsi, L., Knuuti, J., Katila, T., Magnin, I.E.: A 3-D model-based registration approach for the PET, MR and MCG cardiac data fusion. Medical Image Analysis 7, 377–389 (2003)CrossRefGoogle Scholar
  7. 7.
    Thayananthan, A., Stenger, B., Torr, P.H.S., Cipolla, R.: Shape context and chamfer matching in cluttered scenes. In: 2003 IEEE Computer Soc. Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 127–133. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  8. 8.
    Gavrila, D.M.: Pedestrian detection from a moving vehicle. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 37–49. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Olson, C.F., Huttenlocher, D.P.: Automatic target recognition by matching oriented edge pixels. IEEE Transactions on Image Processing 6(1), 103–113 (1997)CrossRefGoogle Scholar
  10. 10.
    Rosin, P.R., West, G.A.W.: Salience distance transforms. Graphical Models and Image Processing 57(6), 483–521 (1995)MATHCrossRefGoogle Scholar
  11. 11.
    Sintorn, I.-M., Borgefors, G.: Shape based identification of proteins in volume images. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 253–262. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall Inc., Englewood Cliffs (2002)Google Scholar
  13. 13.
    Nash, S.G., Sofer, A.: Linear and Nonlinear Programming. Industrial Engineering Series. McGraw-Hill International Editions, New York (1996)Google Scholar
  14. 14.
    Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. Journal of the Association for Computing Machinery 13(4), 471–494 (1966)MATHGoogle Scholar
  15. 15.
    Borgefors, G.: On digital distance transforms in three dimensions. Computer Vision and Image Understanding 64(3), 368–376 (1996)CrossRefGoogle Scholar
  16. 16.
    Borgefors, G., Olsson, H.Å.: Localizing and identifying objects: A method for distinguishing noise, occlusion, and other disturbances. In: Pietikäinen, M., Seppänen, T. (eds.) Proceedings of (2nd) Nordic Workshop on Industrial Machine Vision, Oulu, Finland, ISBN 951-42-3316-6, also published as FOA (Swedish Defence Research Establishment) Reprint B 30284-3.4 (September 1992)Google Scholar
  17. 17.
    Sandin, S., Öfverstedt, L.G., Wikström, A.C., Wrange, O., Skoglund, U.: Structure and flexibility of individual immunoglobulin G molecules in solution. Structure 12, 409–415 (2004)CrossRefGoogle Scholar
  18. 18.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Research 28(1), 235–242 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stina Svensson
    • 1
  • Ida-Maria Sintorn
    • 2
  1. 1.Centre for Image AnalysisSwedish University of Agricultural SciencesUppsalaSweden
  2. 2.CSIRO Mathematical and Information SciencesAustralia

Personalised recommendations