Attention-Based Mesh Simplification Using Distance Transforms

  • Susana Mata
  • Luis Pastor
  • Angel Rodríguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)


Although widely used for image processing, Distance Transforms have only recently started to be used in computer graphics. This paper proposes a new mesh simplification technique based on Distance Transforms that allows taking into account the proximity of a mesh element to the focus of attention for adapting the approximation error which will be tolerated during the simplification process to the relative importance of that mesh element. Experimental results show the feasibility of this approach.


Computer Graphic Mesh Element Distance Threshold Distance Image Polygonal Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Clark, J.H.: Hierarchical geometric models for visible surface algorithms. Communications of the ACM 19, 547–554 (1976)MATHCrossRefGoogle Scholar
  2. 2.
    Puppo, E., Scopigno, R.: Simplification, LOD and multiresolution principles and applications. In: Fellner, D., Szirmay-Kalos, L. (eds.) EUROGRAPHICS 1997, vol. 16 (1997); Tutorial Notes PS97 TN4Google Scholar
  3. 3.
    Garland, M.: Multiresolution modeling: Survey & future opportunities. In: EUROGRAPHICS 1999 (1999)Google Scholar
  4. 4.
    Luebke, D.P.: A developer’s survey of polygonal simplification algorithms. IEEE Computer Graphics and Applications 21(3), 24–35 (2001)CrossRefGoogle Scholar
  5. 5.
    Luebke, D., Reddy, M., Cohen, J.D., Varshney, A., Watson, B., Huebner, R.: Level of Detail for 3D Graphics. Morgan Kauffmann, San Francisco (2003)Google Scholar
  6. 6.
    De Floriani, L., Kobbelt, L., Puppo, E.: A survey on data structures for level-of-detail models. In: Dodgson, N., Floater, M., Sabin, M. (eds.) Advances in Multiresolution for Geometric Modelling. Series in Mathematics and Visualization, pp. 49–74. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Xia, J.C., Varshney, A.: Dynamic view-dependent simplification for polygonal models. In: Yagel, R., Nielson, G.M. (eds.) IEEE Visualization 1996, pp. 335–344 (1996)Google Scholar
  8. 8.
    Hoppe, H.: View-dependent refinement of progressive meshes. In: SIGGRAPH 1997, Computer Graphics Annual Conference Series, pp. 189–198. ACM, New York (1997)CrossRefGoogle Scholar
  9. 9.
    Ferwerda, J.A.: Elements of early vision for computer graphics (tutorial). IEEE Computer Graphics and Applications 21(5), 22–33 (2001)CrossRefGoogle Scholar
  10. 10.
    Garland, M., Heckbert, P.: Simplifying surfaces with color and texture using quadric error metrics. In: Proceedings of IEEE Visualization 1998, pp. 263–270 (1998)Google Scholar
  11. 11.
    Cohen, J., Olano, M., Manocha, D.: Appearance-preserving simplification. In: Proceedings of SIGGRAPH 1998, pp. 115–122 (1998)Google Scholar
  12. 12.
    O’Sullivan, C., Howlett, S., Morvan, Y., McDonnell, R., O’Conor, K.: Perceptually adaptive graphics. In: Schlick, C., Purgathofer, W. (eds.) Eurographics State-of-the-Art Report (EG-STAR), vol. 6, pp. 141–164. Eurographics Association (2004)Google Scholar
  13. 13.
    Cheng, I., Boulanger, P.: A 3D perceptual metric using just-noticeable-difference. In: Proc. of Eurographics 2005, Eurographics, pp. 97–100 (2005)Google Scholar
  14. 14.
    Lindstrom, P., Turk, G.: Image-driven simplification. ACM Transactions on Graphics 19(3), 204–241 (2000)CrossRefGoogle Scholar
  15. 15.
    Reddy, M.: Perceptually Modulated Level of Detail for Virtual Environments. Ph. D. dissertation, University of Edinburgh (1997)Google Scholar
  16. 16.
    Luebke, D.P.: View-dependent simplification of arbitrary polygonal environments. Ph. D. dissertation, University of North Carolina (1998)Google Scholar
  17. 17.
    Baudisch, P., DeCarlo, D., Duchowski, A.T., Geisler, W.S.: Focusing on the essential: considering attention in display design. Communications of the ACM 46(3), 60–66 (2003) (Special issue: Attentive user interfaces)CrossRefGoogle Scholar
  18. 18.
    Kleinfelder, S.: Foveated imaging on a smart focal plane. Web (1999) (Retrieved june 26, 2006) from source,
  19. 19.
    Murphy, H., Duchowski, A.: Gaze-contingent level of detail rendering. In: Proceedings of EuroGraphics 2001, pp. 219–228 (2001)Google Scholar
  20. 20.
    Levoy, M., Whitaker, R.: Gaze-directed volume rendering. In: SI3D 1990: Proceedings of the 1990 symposium on Interactive 3D graphics, pp. 217–223. ACM Press, New York (1990)CrossRefGoogle Scholar
  21. 21.
    Rosenfeld, A., Pfaltz, J.: Sequential operations in digital picture processing. Journal of the Association for Computing Machinery 13(4), 471–491 (1966)MATHGoogle Scholar
  22. 22.
    Rosenfeld, A., Pfaltz, J.: Distance functions on digital pictures. Pattern Recognition 1, 33–61 (1968)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics and Image Processing 34, 344–371 (1986)CrossRefGoogle Scholar
  24. 24.
    Perry, R.N., Frisken, S.F.: Kizamu: A system for sculpting digital characters. In: Jain, L.C. (ed.) Proc. of ACM SIGGRAPH, pp. 47–56. ACM Press, New York (2001)Google Scholar
  25. 25.
    Svensson, S.: Representing and Analyzing 3D Digital Shape Using Distance Information. Ph. D. dissertation, Swedish University of Agricultural Sciences (2001)Google Scholar
  26. 26.
    Šrámek, M.: Distance fields in visualization and graphics. In: Viola, I., Theussl, T. (eds.) Proc. of CESCG 2002, Budmerice, Slovak Republic, pp. 13–16 (2002)Google Scholar
  27. 27.
    Jones, M.W., Bærentzen, A., Šrámek, M.: Discrete 3D distance fields: Techniques and applications. IEEE Transactions on Visualization and Computer Graphics 12(4), 581–599 (2006)CrossRefGoogle Scholar
  28. 28.
    Teschner, M., Kimmerle, S., Zachmann, G., Heidelberger, B., Raghupathi, L., Fuhrmann, A., Cani, M.P., Faure, F., Magnetat-Thalmann, N., Strasser, W.: Collision detection for deformable objects. In: Eurographics State-of-the-Art Report (EG-STAR), Eurographics Association, pp. 119–139 (2004)Google Scholar
  29. 29.
    De Floriani, L., Magillo, P., Puppo, E.: Building and traversing a surface at variable resolution. In: Proceedings of IEEE Visualization 97, pp. 103–110 (1997)Google Scholar
  30. 30.
    De Floriani, L., Magillo, P., Puppo, E.: Efficient implementation of multi-triangulations. In: Proceedings of IEEE Visualization 98, pp. 43–50 (1998)Google Scholar
  31. 31.
    Geometric Modeling and Computer Graphics Research Group. DISI - Dipartimento di Informatica e Scienze dell’Informazione University of Genova: The MT (Multi-Tesselation) Package. Web (2005) (Retrieved june 26, 2006), from source,
  32. 32.
    Mata, S., Pastor, L., Rodrguez, A.: Silhouette detection for adaptive polygonal mesh simplification using distance transforms. In: Braz, J., Jorge, J., Dias, M., Marcos, A. (eds.) Proc. International Conference on Computer Graphics Theory and Applications, GRAPP 2006. Setbal, Portugal, INSTICC, pp. 43–50 (2006)Google Scholar
  33. 33.
    Ciampalini, A., Cignoni, P., Montani, C., Scopigno, R.: Multiresolution decimation based on global error. The Visual Computer 13(5), 228–246 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Susana Mata
    • 1
  • Luis Pastor
    • 1
  • Angel Rodríguez
    • 2
  1. 1.Dpto. de Arquitectura y Tecnología de ComputadoresCiencias de la Computación e Inteligencia Artificial, U. Rey Juan Carlos (URJC)Móstoles, MadridSpain
  2. 2.Dept. de Tecnología FotónicaU. Politécnica de Madrid (UPM)Boadilla del MonteSpain

Personalised recommendations