Advertisement

An Objective Comparison Between Gray Weighted Distance Transforms and Weighted Distance Transforms on Curved Spaces

  • Céline Fouard
  • Magnus Gedda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)

Abstract

In this paper, we compare two different definitions of distance transform for gray level images: the Gray Weighted Distance Transform (GWDT), and the Weighted Distance Transform On Curved Space (WDTOCS). We show through theoretical and experimental comparisons the differences, the strengths and the weaknesses of these two distances.

References

  1. 1.
    Bloch, I.: Fuzzy spatial relationships for image processing and interpretation: a review. Image and Vision Computing 23(2), 89–110 (2005)CrossRefGoogle Scholar
  2. 2.
    Sladoje, N., Nyström, I., Saha, P.K.: Mesurements of digitized objects with fuzzy borders in 2D and 3D. Image and Vision Computing 23(2), 123–132 (2005)CrossRefGoogle Scholar
  3. 3.
    Arcelli, C., Luca, S.: Skeletoinization of labeled gray-tone images. Image and Vision Computing 23(2), 159–167 (2005)CrossRefGoogle Scholar
  4. 4.
    Borgefors, G.: Applications using distance transforms. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) Aspects of Visual Form Processing, pp. 83–108. World Scientific, Singapore (1994)Google Scholar
  5. 5.
    Rutovitz, D.: Data structures for operations on digital images. In: Cheng, G.C. (ed.) Pictorial Pattern Recognition, Washington, Thompson, pp. 105–133 (1968)Google Scholar
  6. 6.
    Levi, G., Montanari, U.: A gray-weighted skeleton. Information and Control 17(1), 62–91 (1970)zbMATHCrossRefGoogle Scholar
  7. 7.
    Saha, P., Wehrli, F.W., Gomberg, B.R.: Fuzzy distance transform: Theory, algorithms, and applications. Computer Vision and Image Understanding 86(3), 171–190 (2002)zbMATHCrossRefGoogle Scholar
  8. 8.
    Verbeek, P., Verwer, B.: Shading from shape, the eikonal equation solved by greyweighted sitance transform. Pattern Recognition Letters 11, 681–690 (1990)zbMATHCrossRefGoogle Scholar
  9. 9.
    Kimmel, R., Kiryati, N., Bruckstein, A.: Sub-pixel distance maps and weighted distance transforms. Journal of Mathematical Imaging and Vision 6, 223–233 (1996)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Toivanen, P.J.: New geodesic distance transforms for gray-scale images. Pattern Recognition Letters 17(5), 437–450 (1996)CrossRefGoogle Scholar
  11. 11.
    Bloch, I.: On fuzzy distances and their use in image processing under imprecision. Pattern Recognition 32(11), 1873 (1999)CrossRefGoogle Scholar
  12. 12.
    Bloch, I.: Geodesic balls in a fuzzy set and fuzzy geodesic mathematical morphology. Pattern Recognition 33(6), 897–906 (2000)CrossRefGoogle Scholar
  13. 13.
    Soille, P.: Generalized geodesy via geodesic time. Pattern Recognition Letters 15, 1235–1240 (1994)CrossRefGoogle Scholar
  14. 14.
    Saito, T., Toriwaki, J.: New algorithms for euclidean distance transformations of an n-dimensional digitizd picture with applications. Pattern Recognition 27, 1551–1565 (1994)CrossRefGoogle Scholar
  15. 15.
    Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics, and Image Processing 34, 344–371 (1986)CrossRefGoogle Scholar
  16. 16.
    Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. Jornal of the ACM 13(4), 471–494 (1966)zbMATHGoogle Scholar
  17. 17.
    Ikonen, L.: Pixel queue algorithm for geodesic distance transforms. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 228–239. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Sladoje, N., Lindblad, J.: Estimation of moments of digitized objects with fuzzy borders. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 188–195. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Gedda, M., Svensson, S.: Separation of blob-like structures using fuzzy distance based hierarchical clustering. In: Georgsson, F., Börlin, N. (eds.) Symposium on Image Analysis, SSBA 2006, Proceedings, Umeå, Sweden, March 16-17, 2006, pp. 73–76 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Céline Fouard
    • 1
  • Magnus Gedda
    • 1
  1. 1.Centre for Image AnalysisUppsala UniversityUppsalaSweden

Personalised recommendations