Reusing Integer Homology Information of Binary Digital Images

  • Rocío González-Díaz
  • Belén Medrano
  • Javier Sánchez-Peláez
  • Pedro Real
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)


In this paper, algorithms for computing integer (co)homology of a simplicial complex of any dimension are designed, extending the work done in [1,2,3]. For doing this, the homology of the object is encoded in an algebraic-topological format (that we call AM-model). Moreover, in the case of 3D binary digital images, having as input AM-models for the images I and J, we design fast algorithms for computing the integer homology of IJ, IJ and IJ.


Simplicial Complex Chain Complex Homology Group Klein Bottle Smith Normal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    González–Díaz, R., Real, P.: Towards Digital Cohomology. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 92–101. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    González–Díaz, R., Real, P.: On the Cohomology of 3D Digital Images. Discrete Applied Math 147, 245–263 (2005)MATHCrossRefGoogle Scholar
  3. 3.
    González-Díaz, R., Medrano, B., Real, P., Sánchez-Peláez, J.: Algebraic Topological Analysis of Time-Sequence of Digital Images. In: Uhl, J., Persch, G., Dausmann, M., Kirchgässner, W., Drossopoulou, S., Winterstein, G., Goos, G. (eds.) An Attribute Grammar for the Semantic Analysis of ADA. LNCS, vol. 139, pp. 208–219. Springer, Heidelberg (1982)Google Scholar
  4. 4.
    Sergeraert, F.: Homologie effective. I, II. C. R. Acad. Sci. Paris Sér. I Math. 304(11), 279–282, (12), 319–321 (1987)Google Scholar
  5. 5.
    Sergeraert, F.: The computability problem in algebraic topology. Adv. Math. 104(1), 1–29 (1994)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Munkres, J.R.: Elements of Algebraic Topology. Addison–Wesley Co, Reading (1984)MATHGoogle Scholar
  7. 7.
    Agoston, M.K.: Algebraic Topology, a first course. Marcel Dekker Ed., New York (1976)MATHGoogle Scholar
  8. 8.
    Dumas, J.G., Saunders, B.D., Villad, G.: On efficient sparse integer matrix Smith normal form computations. Journal of Symbolic Computation 32, 71–99 (2001)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Peltier, S., Alayrangues, S., Fuchs, L., Lachaud, J.-O.: Computation of homology groups and generators. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 195–205. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    MacLane, S.: Homology. In: Classic in Math. Springer, Heidelberg (1995)Google Scholar
  11. 11.
    González–Díaz, R., Real, P.: Computation of Cohomology Operations on Finite Simplicial Complexes. Homology, Homotopy and Applications 5 (2), 83–93 (2003)MATHMathSciNetGoogle Scholar
  12. 12.
    Herman, G.T.: Geometry of Digital Spaces. Birkhauser, Boston (1998)MATHGoogle Scholar
  13. 13.
    Alexandroff, P., Hopf, H.: Topologie I. Springer, Berlin (1935)MATHGoogle Scholar
  14. 14.
    Erickson, J., Whittlesey, K.: Greedy Optimal Homotopy and Homology Generators. In: Proc. of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1038–1046 (2005)Google Scholar
  15. 15.
    Kong, T.Y.: A Digital Fundamental Group. Computer Graphics 13, 159–166 (1989)CrossRefGoogle Scholar
  16. 16.
    Kong, T.Y., Roscoe, A.W., Rosenfeld, A.: Concepts of Digital Topology. Topology and its Applications 46, 219–262 (1992)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Khalimsky, E.D., Kopperman, R.D., Meyer, P.R.: Computer Graphics and Connected Topologies on Finite Ordered Sets. Topology and Appl. 36, 1–17 (1990)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: Homotopy in Digital Spaces. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 3–14. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rocío González-Díaz
    • 1
  • Belén Medrano
    • 1
  • Javier Sánchez-Peláez
    • 1
  • Pedro Real
    • 1
  1. 1.Departamento de Matemática Aplicada IUniversidad de SevillaSevilleSpain

Personalised recommendations