Combinatorial Relations for Digital Pictures

  • Valentin E. Brimkov
  • Davide Moroni
  • Reneta Barneva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)


In this paper we define the notion of gap in an arbitrary digital picture S in a digital space of arbitrary dimension. As a main result, we obtain an explicit formula for the number of gaps in S of maximal dimension. We also derive a combinatorial relation for a digital curve.


Digital geometry digital picture gap brim 


  1. 1.
    Cohen-Or, D., Kaufman, A.: 3D Line Voxelization and Connectivity Control. IEEE Computer Graphics and Applications 17(6), 80–87 (1997)CrossRefGoogle Scholar
  2. 2.
    Kaufman, A., Cohen, D., Yagel, R.: Volume Graphics. IEEE Computer 26(7), 51–64 (1993)Google Scholar
  3. 3.
    Latecki, L., Eckhardt, U., Rosenfeld, A.: Well-Composed Sets. Computer Vision and Vision Understanding 61, 70–83 (1995)CrossRefGoogle Scholar
  4. 4.
    Klette, R., Rosenfeld, A.: Digital Geometry – Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  5. 5.
    Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital Planarity – a Review. CITR-TR 142, Auckland (2004)Google Scholar
  6. 6.
    Andres, E., Nehlig, P., Françon, J.: Tunnel-Free Supercover 3D Polygons and Polyhedra. In: Fellner, D., Szirmay-Kalos, L. (eds.) EUROGRAPHICS 1997, pp. C3–C13 (1997)Google Scholar
  7. 7.
    Brimkov, V.E., Andres, E., Barneva, R.P.: Object Discretizations in Higher Dimensions. Pattern Recognition Letters 23, 623–636 (2002)zbMATHCrossRefGoogle Scholar
  8. 8.
    Andres, E., Acharya, R., Sibata, C.: Discrete Analytical Hyperplanes. Graphical Models and Image Processing 59, 302–309 (1997)CrossRefGoogle Scholar
  9. 9.
    Brimkov, V.E., Maimone, A., Nordo, G., Barneva, R.P., Klette, R.: The Number of Gaps in Binary Pictures. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 35–42. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Brimkov, V.E., Maimone, A., Nordo, G.: Counting Gaps in Binary Pictures. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 16–24. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Kong, T.Y.: Digital Topology. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33–71. Kluwer, Boston Massachusetts (2001)Google Scholar
  12. 12.
    Kovalevsky, V.A.: Finite Topology as Applied to Image analysis. Computer Vision, Graphics and Image Processing 46(2), 141–161 (1989)CrossRefGoogle Scholar
  13. 13.
    Brimkov, V.E., Klette, R.: Curves, Hypersurfaces, and Good Pairs of Adjacency Relations. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 276–290. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Mylopoulos, J.P., Pavlidis, T.: On the Topological Properties of Quantized Spaces. I. The Notion of Dimension. J. ACM 18, 239–246 (1971)MathSciNetGoogle Scholar
  15. 15.
    Dielissen, V.J., Kaldewaij, A.: Rectangular Partition is Polynomial in Two Dimensions but NP-complete in Three. Information Processing Letters 38, 1–6 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hershberger, J.E., Snoeyink, J.S.: Erased Arrangements of Lines and Convex Decompositions of Polyhedra. Computational Geometry: Theory and Applications 9, 129–143 (1998)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Valentin E. Brimkov
    • 1
  • Davide Moroni
    • 2
  • Reneta Barneva
    • 3
  1. 1.Mathematics DepartmentSUNY Buffalo State CollegeBuffaloUSA
  2. 2.Laboratory of Signals and ImagesInstitute of Science and Information TechnologiesPisaItaly
  3. 3.Department of Computer ScienceSUNY FredoniaUSA

Personalised recommendations