Duality and Geometry Straightness, Characterization and Envelope

  • Jean-Marc Chassery
  • David Coeurjolly
  • Isabelle Sivignon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)


Duality applied to geometrical problems is widely used in many applications in computer vision or computational geometry. A classical example is the Hough Transform to detect linear structures in images. In this paper, we focus on two kinds of duality/polarity applied to geometrical problems: digital straightness detection and envelope computation.


Dual Space Convex Polygon Dual Transformation Distance Labelling Digital Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hough, P.: Method and means for recognizing complex patterns. United States Patent, n3, 69, 654 (1962)Google Scholar
  2. 2.
    Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM 15(1), 11–15 (1972)CrossRefGoogle Scholar
  3. 3.
    Sivignon, I.: De la caractérisation des primitives la reconstruction polyédrique de surfaces en géométrie discrète. Thèse de doctorat, Institut National Polytechnique de Grenoble, Grenoble, France (2004)Google Scholar
  4. 4.
    Dorst, L., Smeulders, A.N.M.: Discrete representation of straight lines. IEEE Trans. on Pattern Anal. and Mach. Intell. 6(4), 450–463 (1984)MATHCrossRefGoogle Scholar
  5. 5.
    McIlroy, M.D.: A note on discrete representation of lines. AT&T Technical Journal 64(2), 481–490 (1985)Google Scholar
  6. 6.
    Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford Society (1989)Google Scholar
  7. 7.
    Vittone, J.: Caractérisation et reconnaissance de droites et de plans en géométrie discrète. Thèse de doctorat, Université Joseph Fourier, Grenoble, France (1999)Google Scholar
  8. 8.
    Lindenbaum, M., Bruckstein, A.: On recursive, \(\mathcal{O}(n)\) partitioning of a digitized curve into digital straight segments. IEEE Trans. on Pattern Anal. and Mach. Intell. 15(9), 949–953 (1993)CrossRefGoogle Scholar
  9. 9.
    Coeurjolly, D.: Algorithmique et géométrie discrte pour la caractrisation des courbes et surfaces. Thèse de doctorat, Université Lumière Lyon 2, Lyon, France (2002)Google Scholar
  10. 10.
    Coeurjolly, D., Sivignon, I., Dupont, F., Feschet, F., Chassery, J.-M.: On digital plane preimage structure. Discrete Applied Math. 151(1-3), 78–92 (2005)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Coeurjolly, D., Brimkov, V.E.: Computational aspects of digital plane and hyperplane recognition. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 291–306. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Dexet, M., Andrès, É.: Linear discrete line recognition and reconstruction based on a generalized preimage. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 174–188. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Vittone, J., Chassery, J.-M.: Recognition of digital naive planes and polyhedrization. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 296–307. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Sivignon, I., Dupont, F., Chassery, J.M.: Digital intersections : minimal carrier, connectiviy and periodicity properties. Graphical Models 66(4), 226–244 (2004)MATHCrossRefGoogle Scholar
  15. 15.
    Veelaert, P.: Geometric constructions in the digital plane. Journal of Mathematical Imaging and Vision 11, 99–118 (1999)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Veelaert, P.: Collinearity and weak collinearity in the digital plane. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry, Dagstuhl, Allemagne. LNCS, vol. 2243, pp. 439–453. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Veelaert, P.: Graph-theoretical properties of parallelism in the digital plane. Discrete Applied Mathematics 125, 135–160 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, Heidelberg (1985)Google Scholar
  19. 19.
    Wood, D., Yap, C.K.: The orthogonal convex skull problem. Discrete and Computational Geometry 3, 349–365 (1988)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Chassery, J.-M., Coeurjolly, D.: Optimal shape and inclusion: open problems. In: Ronse, C., Najman, L., Decencière, E. (eds.) International Symposium on Mathematical Morphology. Computational Imaging and Vision, vol. 30, pp. 229–248. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Goodman, J.E.: On the largest convex polygon contained in a non-convex n −gon or how to peel a potato. Geometricae Dedicata 11, 99–106 (1981)MATHGoogle Scholar
  22. 22.
    Chang, J.S., Yap, C.K.: A polynomial solution for the potato-peeling problem. Discrete & Computational Geometry 1, 155–182 (1986)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jean-Marc Chassery
    • 1
  • David Coeurjolly
    • 2
  • Isabelle Sivignon
    • 2
  1. 1.Laboratoire LISDomaine universitaire GrenobleSt Martin d’HèresFrance
  2. 2.Laboratoire LIRISUniversité Claude Bernard Lyon 1VilleurbanneFrance

Personalised recommendations