Gene Regulation in the Pi Calculus: Simulating Cooperativity at the Lambda Switch

  • Céline Kuttler
  • Joachim Niehren
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4230)


We propose to model the dynamics of gene regulatory networks as concurrent processes in the stochastic pi calculus. As a first case study, we show how to express the control of transcription initiation at the lambda switch, a prototypical example where cooperative enhancement is crucial. This requires concurrent programming techniques that are new to systems biology, and necessitates stochastic parameters that we derive from the literature. We test all components of our model by exhaustive stochastic simulations. A comparison with previous results reported in the literature, experimental and simulation based, confirms the appropriateness of our modeling approach.


Transcription Initiation Operator Region Cooperative Binding Repressor Binding Handshake Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackers, G.K., Johnson, A.D., Shea, M.A.: Quantitative model for gene regulation by λ phage repressor. Proceedings of the National Academy of Sciences USA 79(4), 1129–1133 (1982)CrossRefGoogle Scholar
  2. 2.
    Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998)Google Scholar
  3. 3.
    Aurell, E., Brown, S., Johanson, J., Sneppen, K.: Stability puzzles in phage λ. Physical Review E 65, 51914 (2002)CrossRefGoogle Scholar
  4. 4.
    Baek, K., Svenningsen, S., Eisen, H., Sneppen, K., Brown, S.: Single-cell analysis of λ immunity regulation. Journal of Molecular Biology 334(3), 363–372 (2003)CrossRefGoogle Scholar
  5. 5.
    Bakk, A.: Transcriptional activation mechanisms of the P RM promoter of λ phage. Biophysical Chemistry 114(2–3), 229–234 (2005)CrossRefGoogle Scholar
  6. 6.
    Berg, O.G., Winter, R.B., von Hippel, P.H.: Diffusion-driven mechanisms of protein translocation on nucleic acids: 1 - models and theory. Biochemistry 20, 6929–6948 (1981)CrossRefGoogle Scholar
  7. 7.
    Bower, J.M., Bolouri, H. (eds.): Computational Modeling of Genetic and Biochemical Networks. MIT Press, Cambridge (2001)Google Scholar
  8. 8.
    Bundschuh, R., Hayot, F., Jayaprakash, C.: The role of dimerization in noise reduction of simple genetic networks. Journal of Theoretical Biology 220, 261–269 (2003)CrossRefGoogle Scholar
  9. 9.
    Dodd, I.B., Perkins, A.J., Tsemitsidis, D., Egan, J.B.: Octamerization of CI repressor is needed for effective repression of P RM and efficient switching from lysogeny. Gen. Dev. 15, 3013–3022 (2001)CrossRefGoogle Scholar
  10. 10.
    Dodd, I.B., Shearwin, K.E., Egan, J.B.: Revisited gene regulation in bacteriophage λ. COGD 15(2), 145–152 (2005)CrossRefGoogle Scholar
  11. 11.
    Dodd, I.B., Shearwin, K.E., Perkins, A.J., Burr, T., Hochschild, A., Egan, J.B.: Cooperativity in long-range gene regulation by the lambda CI repressor. Genes Dev. 18(3), 344–354 (2004)CrossRefGoogle Scholar
  12. 12.
    Elf, J., Ehrenberg, M.: What makes ribosome-mediated trascriptional attenuation sensitive to amino acid limitation? PLoS Computational Biology 1(1), 14–23 (2005)CrossRefGoogle Scholar
  13. 13.
    Lodish, H., et al.: Molecular Cell Biology. Freeman, New York (2003)Google Scholar
  14. 14.
    Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22, 403–434 (1976)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Hasty, J., McMillen, D., Isaacs, F., Collins, J.J.: Computational studies of gene regulatory networks: In numero molecular biology. Nature Reviews Genetics 2, 268–279 (2001)CrossRefGoogle Scholar
  16. 16.
    Hawley, D.K., Johnson, A.D., McClure, W.R.: Functional and physical characterization of transcription initiation complexes in the bacteriophage lambda O R region. J. Biol. Chem. 260(14), 8618–8626 (1985)Google Scholar
  17. 17.
    Hawley, D.K., McClure, W.R.: The effect of a lambda repressor mutation on the activation of transcription initiation from the lambda P RM promoter. Cell 32, 327–333 (1983)CrossRefGoogle Scholar
  18. 18.
    Hillston, J.: A Compositional Approach to Performance Modelling. PhD thesis, University of Edinburgh 1995; Distinguished Dissertations Series. Cambridge University Press, Cambridge (1996)Google Scholar
  19. 19.
    Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: systems biology. Annual Review of Genomics and Human Genetics 2(343) (2001)Google Scholar
  20. 20.
    Johnson, A.D., Poteete, A.R., Lauer, G., Sauer, R.T., Ackers, G.K., Ptashne, M.: λ repressor and Cro– components of an efficient molecular switch. Nature 294(5838), 217–223 (1981)CrossRefGoogle Scholar
  21. 21.
    Kierzek, A.M., Zaim, J., Zielenkiewicz, P.: The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression. Journal of Biological Chemistry 276, 8165–8172 (2001)CrossRefGoogle Scholar
  22. 22.
    Koblan, K.S., Ackers, G.K.: Site-specific enthalpic regulation of DNA transcription at bacteriophage λ O R. Biochemistry 31, 57–65 (1992)CrossRefGoogle Scholar
  23. 23.
    Kuttler, C.: Bacterial transcription in the pi calculus. In: 3rd International Workshop on Computational Methods in Systems Biology (2005)Google Scholar
  24. 24.
    Li, M., McClure, W.R., Susskind, M.M.: Changing the mechanism of transcriptional activation by phage λ repressor. Proceedings of the National Academy of Sciences USA 94, 3691–3696 (1997)CrossRefGoogle Scholar
  25. 25.
    McClure, W.R.: Mechanism and control of transcription initiation in prokaryotes. Annual Review Biochemistry 54, 171–204 (1985)CrossRefGoogle Scholar
  26. 26.
    Meyer, B., Ptashne, M.: Gene regulation at the right operator O R of bacteriophage lamba. I. O R3 and autegeneous negative control by repressor. J. Mol. Biol., 19–205 (1980)Google Scholar
  27. 27.
    Michalowski, C.B., Little, J.W.: Postitive autoregulation of cI is a dispensable feature of the phage λ gene regulatory circuitry. J. Bacteriol. 187(18), 6430–6442 (2005)CrossRefGoogle Scholar
  28. 28.
    Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge University Press, Cambridge (1999)Google Scholar
  29. 29.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes (I and II). Information and Computation 100, 1–77 (1992)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Moll, I., Hirokawa, G., Kiel, M.C., Kaji, A., Bläsi, U.: Translation initiation with 70S ribosomes: an alternative pathway for leaderless mRNAs. Nucl. Acids Res. 32(11), 3354–3363 (2004)CrossRefGoogle Scholar
  31. 31.
    Oppenheim, A.B., Kobiler, O., Stavans, J., Court, D.L., Adhya, S.: Switches in bacteriophage lambda development. Annual Reviews Genetics 39, 409–429 (2005)CrossRefGoogle Scholar
  32. 32.
    Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus. Transactions on Computational Systems Biology (to appear, 2005)Google Scholar
  33. 33.
    Priami, C.: Stochastic π-calculus. Computer Journal 6, 578–589 (1995)CrossRefGoogle Scholar
  34. 34.
    Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters 80, 25–31 (2001)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Ptashne, M.: A Genetic Switch: Phage Lambda Revisited, 3rd edn. Cold Spring Harbor Laboratory Press (2004)Google Scholar
  36. 36.
    Ptashne, M., Gann, A.: Genes and Signals. Cold Spring Harbor Laboratory Press (2002)Google Scholar
  37. 37.
    Regev, A.: Computational Systems Biology: A Calculus for Biomolecular Knowledge. Tel Aviv University, PhD thesis (2002)Google Scholar
  38. 38.
    Regev, A., Shapiro, E.: Cells as computation. Nature 419, 343 (2002)CrossRefGoogle Scholar
  39. 39.
    Regev, A., Shapiro, E.: The π-calculus as an abstraction for biomolecular systems. In: Ciobanu, G., Rozenberg, G. (eds.) Modelling in Molecular Biology. Springer, Heidelberg (2004)Google Scholar
  40. 40.
    Révet, B., von Wilcken-Bergmann, B., Bessert, H., Barker, A., Müller-Hill, B.: Four dimers of lambda repressor bound to two suitably spaced pairs of lambda operators form octamers and DNA loops over large distances. Current Biology 9(3), 151–154 (1999)CrossRefGoogle Scholar
  41. 41.
    Shea, M., Ackers, G.K.: The O R control system of bacteriophage lambda: A physical-chemical model for gene regulation. Molecular Biology 181, 211–230 (1985)CrossRefGoogle Scholar
  42. 42.
    Shean, C.S., Gottesman, M.E.: Translation of the prophage λ cI transcript. Cell 70(3), 513–522 (1992)CrossRefGoogle Scholar
  43. 43.
    Slutsky, M., Mirny, L.A.: Kinetics of protein-DNA interaction: Facilitated target location in sequence-dependent potential. Biophys. J. 87(6), 4021–4035 (2004)CrossRefGoogle Scholar
  44. 44.
    Sneppen, K., Zocchi, G.: Physics in Molecular Biology. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  45. 45.
    Svenningsen, S.L., Costantino, N., Court, D.L., Adhya, S.: On the role of Cro in λ prophage induction. Proceedings of the National Academy of Sciences USA 102(12), 4465–4469 (2005)CrossRefGoogle Scholar
  46. 46.
    Vilar, J.M.G., Saiz, L.: DNA looping in gene regulation: from the assembly of macromolecular complexes to the control of transcriptional noise. Current Opinion in Genetics & Development 15, 1–9 (2005)CrossRefGoogle Scholar
  47. 47.
    Wagner, R.: Transcription Regulation in Prokaryotes. Oxford University Press, Oxford (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Céline Kuttler
    • 1
  • Joachim Niehren
    • 2
  1. 1.Interdisciplinary Research InstituteLilleFrance
  2. 2.INRIA FutursLilleFrance

Personalised recommendations