Modelling the Influence of RKIP on the ERK Signalling Pathway Using the Stochastic Process Algebra PEPA

  • Muffy Calder
  • Stephen Gilmore
  • Jane Hillston
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4230)


This paper examines the influence of the Raf Kinase Inhibitor Protein (RKIP) on the Extracellular signal Regulated Kinase (ERK) signalling pathway [5] through modelling in a Markovian process algebra, PEPA [11]. Two models of the system are presented, a reagent-centric view and a pathway-centric view. The models capture functionality at the level of subpathway, rather than at a molecular level. Each model affords a different perspective of the pathway and analysis. We demonstrate the two models to be formally equivalent using the timing-aware bisimulation defined over PEPA models and discuss the biological significance.


Model Check Extracellular Signal Regulate Kinase Pathway Model Process Algebra Activity Matrix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 169–276. Springer, Heidelberg (1996)Google Scholar
  2. 2.
    Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA. In: Proc. of BioConcur 2004, Danmarks Tekniske Universitet, pp. 26–41 (2004) (to appear in ENTCS) Google Scholar
  3. 3.
    Calder, M., Gilmore, S., Hillston, J.: Automatically deriving ODEs from process algebra models of signalling pathways. In: Computational Methods in Systems Biology 2005. LFCS, University of Edinburgh, pp. 204–215 (2005)Google Scholar
  4. 4.
    Calder, M., Vyshemirsky, V., Orton, R., Gilbert, D.: Analysis of signalling pathways using the PRISM model checker. In: Computational Methods in Systems Biology 2005. LFCS, University of Edinburgh, pp. 179–190 (2005)Google Scholar
  5. 5.
    Cho, K.-H., Shin, S.-Y., Kim, H.-W., Wolkenhauer, O., McFerran, B., Kolch, W.: Mathematical modeling of the influence of RKIP on the ERK signaling pathway. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 127–141. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Colom, J.M., Silva, M.: Convex geometry and semiflows in P/T nets. a comparative study of algorithms for computation of minimal P-semiflows. In: Rozenberg, G. (ed.) APN 1990. LNCS, vol. 483, pp. 79–112. Springer, Heidelberg (1991)Google Scholar
  7. 7.
    Elliot, W.H., Elliot, D.C.: Biochemistry and Molecular Biology, 2nd edn. Oxford University Press, Oxford (2002)Google Scholar
  8. 8.
    Fisher, J., Harel, D., Hubbard, E.J.A., Piterman, N., Stern, M.J., Swerdlin, N.: Combining state-based and scenario-based approaches in modeling biological systems. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 236–241. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Gilmore, S., Hillston, J.: The PEPA Workbench: A Tool to Support a Process Algebra-based Approach to Performance Modelling. In: Haring, G., Kotsis, G. (eds.) TOOLS 1994. LNCS, vol. 794, pp. 353–368. Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Heiner, M., Koch, I.: Petri net based model validation in systems biology. In: 25th International Conference on Application and Theory of Petri Nets, Bologna, Italy (2004)Google Scholar
  11. 11.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  12. 12.
    Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: A hybrid approach. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 52–66. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Matheiss, T.H., Rubin, D.S.: A survey and comparison of methods for finding all the vertices of convex polyhedral sets. Mathematics of Operational Research 5(2), 167–185 (1980)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Papin, J.A., Price, N.D., Wiback, S.J., Fell, D.A., Palsson, B.O.: Metabolic pathways in the post-genome era. TRENDS in Biochemical Sciences 28(5), 250–258 (2003)CrossRefGoogle Scholar
  15. 15.
    Priami, C., Regev, A., Silverman, W., Shapiro, E.: Application of a stochastic name passing calculus to representation and simulation of molecular processes. Information Processing Letters 80, 25–31 (2001)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Regev, A.: Computational Systems Biology: a Calculus for Biomolecular Knowledge. PhD thesis, Tel Aviv University (2002)Google Scholar
  17. 17.
    Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: an abstraction for biological compartments. Theoretical Computer Science 325(1), 141–167 (2004)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Proceedings of the Pacific Symposium of Biocomputing (PSB 2001), pp. 459–470 (2001)Google Scholar
  19. 19.
    Stewart, W.: Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)MATHGoogle Scholar
  20. 20.
    Vissers, C.A., Scollo, G., van Sinderen, M., Brinksma, E.: Specification styles in distributed systems design and verification. Theoretical Computer Science 89, 179–206 (1991)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Muffy Calder
    • 1
  • Stephen Gilmore
    • 2
  • Jane Hillston
    • 2
  1. 1.Department of Computing ScienceThe University of GlasgowGlasgowScotland
  2. 2.Laboratory for Foundations of Computer ScienceThe University of EdinburghScotland

Personalised recommendations