The Dynamics of Network Minority Game

  • Bing-Hong Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4247)


The evolutionary dynamics of minority games based on three generic networks have been investigated : Kauffman’s NK networks (Kauffman nets), growing directed networks (GDNets), and growing directed networks with a small fraction of link reversals (GDRNets). We show that the dynamics and the associated phase structure of the game depend crucially on the structure of the underlying network. The dynamics on GDNets is very stable for all values of the connection number K, in contrast to the dynamics on Kauffman’s NK networks, which becomes chaotic when K>K c =2. The dynamics of GDRNets, on the other hand, is near critical. Under a simple evolutionary scheme, the network system with a “near” critical dynamics evolves to a high level of global coordination among its agents; this suggests that criticality leads to the best performance. For Kauffman nets with K>3, the evolutionary scheme has no effect on the dynamics (it remains chaotic) and the performance of the MG resembles that of a random choice game (RCG).


Preferential Attachment Directed Network Connection Number Link Reversal Minority Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, R., Barabási, A.-L.: Rev. Mod. Pays.  74, 47 (2002)Google Scholar
  2. 2.
    Newman, M.E.J.: SIAM Review 45, 167 (2003)Google Scholar
  3. 3.
    Dorogovtsev, S.N., Mendes, J.F.F.: Advances in Physics 51, 1079 (2002)Google Scholar
  4. 4.
    Strogatz, S.H.: Nature 410, 268 (2001)Google Scholar
  5. 5.
    Barabási, A.-L., Albert, R.: Science 286, 509–512 (1999)Google Scholar
  6. 6.
    Challet, D., Zhang, Y.-C.: Physica A. 246, 407 (1997)Google Scholar
  7. 7.
    Arthur, W.: Am. Econ. Assoc. Paper, Proc. 84, 406 (1994)Google Scholar
  8. 8.
    Savit, R., Manuca, R., Riolo, R.: Phys. Rev. Lett. 82, 2203 (1999)Google Scholar
  9. 9.
    Johnson, N.F., Hui, P.M., Jonson, R., Lo, T.S.: Phys. Rev. Lett. 82, 3360 (1999)Google Scholar
  10. 10.
    Hod, S., Nakar, E.: Phys. Rev. Lett. 88, 238702 (2002)Google Scholar
  11. 11.
    Chen, K., Wang, B.-H., Yuan, B.: Phys. Rev. E. 69, 025102(R) (2004)Google Scholar
  12. 12.
    Yuan, B., Chen, K.: Phys. Rev. E. 69, 067106 (2004)Google Scholar
  13. 13.
    Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York (1993)Google Scholar
  14. 14.
    Kauffman, S.A.: J. Theor. Biol. 22, 437 (1969)Google Scholar
  15. 15.
    Aldana, M., Cluzel, P.: PNAS 100, 8710 (2003)Google Scholar
  16. 16.
    Paczuski, M., Bassler, K.E., Corral, A.: Phys. Rev. Lett. 84, 3185 (2000)Google Scholar
  17. 17.
    Galstyan, A., Lerman, K.: Phys. Rev. E. 66, 015103(R) (2002)Google Scholar
  18. 18.
    Anghel, M., Toroczkai, Z., Bassler, K.E., Korniss, G.: Phys. Rev. Lett. 92, 058701 (2004)Google Scholar
  19. 19.
    Watts, J.D., Strogatz, S.H.: Nature 393, 440 (1998)Google Scholar
  20. 20.
    Yuan, B., Chen, K., Wang, B.-H.: arXiv: cond-mat/0408391Google Scholar
  21. 21.
    Derrida, B., Pomeau, Y.: Europhys. Lett. 1, 45 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bing-Hong Wang
    • 1
    • 2
  1. 1.Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Shanghai Academy of System ScienceShanghaiChina

Personalised recommendations