Selection Enthusiasm

  • A. Agrawal
  • I. Mitchell
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4247)


Selection Enthusiasm is a technique that allows weaker individuals in a population to compete with stronger individuals. In essence, each time a individual is selected its enthusiasm for being selected again is diminished relatively; the converse happens to the unselected individuals i.e. their raw fitness is adjusted. Therefore the fitness of an individual is based on two parameters; objectiveness and Selected Enthusiasm. The effects of such a technique are measured and results show that using selection enthusiasism yields fitter individuals and a more diverse population.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: An analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary Computation 8(1), 47–62 (2004)CrossRefGoogle Scholar
  2. 2.
    Daida, J.M., Hilss, A.M., Ward, D.J., Long, S.L.: Visualizing tree structures in genetic programming. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1652–1664. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Ekárt, A.: Genetic programming: new performance improving methods and applications. PhD thesis, Eötvös Lorand University (2001)Google Scholar
  4. 4.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1992)Google Scholar
  5. 5.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)MATHGoogle Scholar
  6. 6.
    Larrañaga, P., et al.: Genetic algorithms for the travelling salesman problem: A review of representations and operators. Artificial Intelligence Review 13, 129–170 (1999)CrossRefGoogle Scholar
  7. 7.
    Mitchell, M.: An introduction to genetic algorithms. MIT Press, Cambridge (1996)Google Scholar
  8. 8.
    Czarn, A., MacNish, C., Kaipillil, V., Turlach, B., Gupta, R.: Statistical exploratory analysis of genetic algorithms. IEEE Trans. on Evolutionary Computation 8, 405–421 (2004)CrossRefGoogle Scholar
  9. 9.
    Reinelt, G.: Tsplib - a traveling salesman library. ORSA Journal on Computing 3, 376–384Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. Agrawal
    • 1
  • I. Mitchell
    • 1
  1. 1.Middlesex UniversityUK

Personalised recommendations