Advertisement

Clustering Protein Interaction Data Through Chaotic Genetic Algorithm

  • Hongbiao Liu
  • Juan Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4247)

Abstract

In this paper, we proposed a Chaotic Genetic Algorithm (CGA) to cluster protein interaction data to find protein complexes. Compared with other computation methods, the main advantage of this method is that it can find as many potential protein complexes as possible. Application on the Yeast genomic data highlights the efficiency of our method.

Keywords

Cluster Coefficient Maximal Clique Nuclear Magnetic Resonance Spectroscopy Input Graph Dense Subgraph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberts, B.: The cell as a collection of protein machines: Preparing the next generation of molecular biologists. Cell 92, 291–294 (1998)CrossRefGoogle Scholar
  2. 2.
    Hartwell, L.H., Hopfield, J.J., Leibler, S., et al.: From molecular to modular cell biology. Nature 402, C47–C52 (1999)CrossRefGoogle Scholar
  3. 3.
    Gavin, A.C., Aloy, P., Grandi, P., et al.: Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006)CrossRefGoogle Scholar
  4. 4.
    Dziembowski, A., Seraphin, B.: Recent Developments in the analysis of protein complexes. FEBS Letters 556, 1–6 (2004)CrossRefGoogle Scholar
  5. 5.
    Bernal, J.D., Fankuchen, I., Perutz, M.F.: An X-Ray study of Chymotrypsin and Haemoglobin. Nature 141, 523–524 (1938)CrossRefGoogle Scholar
  6. 6.
    Drenth, J.: Principles of protein X-Ray crystallography. Springer, Heidelberg (1994)Google Scholar
  7. 7.
    Wuthrich, K.: NMR of proteins and nucleic acids. John Wiley and Sons, New York (1986)Google Scholar
  8. 8.
    Wand, A., Englander, S.: Protein complexes studied by NMR spectroscopy. Current Opinion in Biotechnology 7, 403–408 (1996)CrossRefGoogle Scholar
  9. 9.
    King, A.D., Przulj, N., Jurisica, I.: Protein complex prediction via cost-based clustering. Bioinformatics 20, 3013–3020 (2004)CrossRefGoogle Scholar
  10. 10.
    Bader, G., Hogue, C.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4 (2003)Google Scholar
  11. 11.
    Pržulj, N.: Graph theory approaches to protein interaction data analysis. In: Jurisica, I., Wigle, D. (eds.) Knowledge Discovery in High-Throughput Biological Domains, Interpharm/CRC (2004)Google Scholar
  12. 12.
    Zicai, L., Dan, Z., Hong, W.: Simulated optimization method based on chaotic vector. Control and Decision 14, 382–384 (1999)Google Scholar
  13. 13.
    von Mering, C., Kraus, R., Snel, B., et al.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002)CrossRefGoogle Scholar
  14. 14.
    Mewes, H.W., Frishman, Guldener, U., et al.: Mips: a database for genomes and protein sequences. Nucleic Acids Research 30, 31–34 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hongbiao Liu
    • 1
  • Juan Liu
    • 1
  1. 1.School of ComputerWuhan UniversityWuhanChina

Personalised recommendations