A Framework for Visualizing Association Mining Results

  • Gürdal Ertek
  • Ayhan Demiriz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4263)


Association mining is one of the most used data mining techniques due to interpretable and actionable results. In this study we propose a framework to visualize the association mining results, specifically frequent itemsets and association rules, as graphs. We demonstrate the applicability and usefulness of our approach through a Market Basket Analysis (MBA) case study where we visually explore the data mining results for a supermarket data set. In this case study we derive several interesting insights regarding the relationships among the items and suggest how they can be used as basis for decision making in retailing.


Association Rule Frequent Itemsets Support Level Information Visualization Apriori Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th VLDB Conference, Santiago, Chile, pp. 487–499 (1994)Google Scholar
  3. 3.
    Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  4. 4.
  5. 5.
    Brijs, T., Swinnen, G., Vanhoof, K., Wets, G.: The use of association rules for product assortment decisions: a case study. In: Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining, San Diego, USA, pp. 254–260 (1999)Google Scholar
  6. 6.
    de Oliveira, M.C.F., Levkowitz, H.: From visual data exploration to visual data mining: a survey. IEEE Transactions on Visualization and Computer Graphics 9(3), 378–394 (2003)CrossRefGoogle Scholar
  7. 7.
    Demiriz, A.: Enhancing product recommender systems on sparse binary data. Journal of Data Mining and Knowledge Discovery 9(2), 378–394 (2004)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Eick, S.G.: Visual discovery and analysis. IEEE Transactions on Visualization and Computer Graphics 6(1), 44–58 (2000)CrossRefGoogle Scholar
  9. 9.
    Erten, D.A., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: GraphAEL: Graph animations with evolving layouts. In: Pinkston, T.M., Prasanna, V.K. (eds.) HiPC 2003. LNCS (LNAI), vol. 2913, pp. 98–110. Springer, Heidelberg (2003)Google Scholar
  10. 10.
  11. 11.
    Han, J., Kamber, M.: Data Mining Concepts and Techniques. Morgan Kaufmann, San Francisco (2001)Google Scholar
  12. 12.
    Herman, I., Melançon, G., Marshall, M.S.: Graph visualization and navigation in information visualization: A survey. IEEE Transactions on Visualization and Computer Graphics 6(1), 24–43 (2000)CrossRefGoogle Scholar
  13. 13.
    Hoffman, P.E., Grinstein, G.G.: A survey of visualizations for high-dimensional data mining, ch. 2. In: Fayyad, U., Grinstein, G.G., Wierse, A. (eds.) Information visualization in data mining and knowledge discovery, pp. 47–82 (2002)Google Scholar
  14. 14.
    Hofmann, H., Siebes, A.P.J.M., Wilhelm, A.F.X.: Visualizing association rules with interactive mosaic plots. In: Proceedings of the Sixth International Conference on Knowledge Discovery and Data Mining, pp. 227–235 (2000)Google Scholar
  15. 15.
  16. 16.
    Keim, D.A.: Information visualization and visual data mining. IEEE Transactions on Visualization and Computer Graphics 8(1), 1–8 (2002)CrossRefGoogle Scholar
  17. 17.
    Kopanakis, I., Theodoulidis, B.: Visual data mining modeling techniques for the visualization of mining outcomes. Journal of Visual Languages and Computing 14, 543–589 (2003)CrossRefGoogle Scholar
  18. 18.
  19. 19.
  20. 20.
  21. 21.
  22. 22.
    Tan, P., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association patterns. In: Proceedings of SIGKDD, pp. 32–41 (2002)Google Scholar
  23. 23.
    Wong, P.C., Whitney, P., Thomas, J.: Visualizing association rules for text mining. In: Proceedings of the 1999 IEEE Symposium on Information Visualization (1999)Google Scholar
  24. 24.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gürdal Ertek
    • 1
  • Ayhan Demiriz
    • 2
  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey
  2. 2.Department of Industrial EngineeringSakarya UniversitySakaryaTurkey

Personalised recommendations