Block Motion Estimation Using Modified Two-Bit Transform

  • Begüm Demir
  • Sarp Ertürk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4263)


Modified two-bit transform based block motion estimation is presented in this paper. Initially video frames are converted into two-bit representations using the two-bit transform (2BT) and binary block based motion estimation is performed using these two bit-planes. Modification to the original 2BT based motion estimation scheme is introduced by conditional local or full searches using the MAD criterion to improve the initial motion estimation accuracy. Experimental results show that the proposed modified 2BT-based motion estimation technique can significantly improve peak signal-to-noise radio performance compared to 2BT without modification, and also outperforms the modified one-bit transform (1BT) based motion estimation approach.


Motion Vector Motion Estimation Search Range Mean Absolute Difference Diamond Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    He, Z.-L., Tsui, C.-Y., Chan, K.-K., Liou, M.L.: Low-power VLSI design for motion estimation using adaptive pixel truncation. IEEE Trans.Circuits Syst. Video Technol. 10(8), 669–678 (2000)Google Scholar
  2. 2.
    Jou, J.M., Chen, P.-Y., Sun, J.-M.: The gray prediction search algorithm for block motion estimation. IEEE Trans. Circuits Syst. Video Technol. 9(6), 843–848 (1999)CrossRefGoogle Scholar
  3. 3.
    Mattavelli, M., Zoia, G.: Vector-tracing algorithm for motion estimation in large search windows. IEEE Trans. Circuits Syst. Video Technol. 10(12), 1426–1437 (2000)CrossRefGoogle Scholar
  4. 4.
    Koga, T., Linuma, K., Hirano, A., Lijima, Y., Ishiguro, T.: Motion-compensated inter-frame coding for video conferencing. In: Proc. NTC 1981, pp. G5.3.1–G5.3.5 (1981)Google Scholar
  5. 5.
    Jain, J., Jain, A.: Displacement measurement and its application in internal image coding. IEEE Trans. Commun. 29(COM–12), 1799–1808 (1981)CrossRefGoogle Scholar
  6. 6.
    Ghanbari, M.: The cross-search algorithm for motion estimation. IEEE Trans. Commun. 38(7), 950–953 (1990)CrossRefGoogle Scholar
  7. 7.
    Srinivasan, R., Rao, K.: Predictive coding based on efficient motion estimation. IEEE Trans. Commun. 33(8), 888–896 (1985)CrossRefGoogle Scholar
  8. 8.
    Li, R., Zeng, B., Liou, M.L.: A new three-step search algorithm for block motion estimation. IEEE Trans. Circuits Syst. Video Technol. 4(4), 438–442 (1994)CrossRefGoogle Scholar
  9. 9.
    Po, L.M., Ma, W.C.: A novel four-step search algorithm for fast block motion estimation. IEEE Trans. Circuits Syst. Video Technol. 6(3), 313–317 (1996)CrossRefGoogle Scholar
  10. 10.
    Liu, L.K., Faig, E.: A block-based gradient descent search algorithm for block motion estimation in video coding. IEEE Trans. Circuits Syst. Video Technol. 6(4), 419–422 (1996)CrossRefGoogle Scholar
  11. 11.
    Zhu, S., Ma, K.-K.: A new diamond search algorithm for fast blockmatching motion estimation. IEEE Trans. Image Process. 9(2), 287–290 (2000)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Kuo, C.J., Yeh, C.H., Odeh, S.F.: Polynomial search algorithm for motion estimation. IEEE Trans. Circuits Syst. Video Technol. 10(5), 813–818 (2000)CrossRefGoogle Scholar
  13. 13.
    Tourapis, A.M., Au, O.C., Liou, M.L.: Fast Motion Estimation using Circular Zonal Search. In: Proc. of SPIE Sym. of Visual Comm. & Image Processing, VCIP 1999, January 25-27, 1999, vol. 2, pp. 1496–1504 (1999)Google Scholar
  14. 14.
    Nie, Y., Ma, K.K.: Adaptive Irregular Pattern Search With Matching Prejudgment for Fast Block-Matching Motion Estimation. IEEE Trans. Circuits Syst. Video Technol. 15(6), 789–794 (2005)CrossRefGoogle Scholar
  15. 15.
    Liu, B., Zaccarin, A.: New fast algorithm for motion estimation of block motion vectors. IEEE Trans. Circuits Syst. Video Technol. 3(2), 148–157 (1993)CrossRefGoogle Scholar
  16. 16.
    Choi, K.T., Chan, S.C., Ng, T.S.: A new fast motion estimation algorithm using hexagonal subsampling pattern and multiple candidates search. In: Proc. ICIP, vol. 2, pp. 497–500 (1996)Google Scholar
  17. 17.
    Wang, Y., Wang, Y., Kuroda, H.: A globally adaptive pixel-decimation algorithm for block-motion estimation. IEEE Trans. Circuits Syst. Video Technol. 10(6), 1006–1011 (2000)CrossRefGoogle Scholar
  18. 18.
    Kim, Choi, T.: A fast full-search motion-estimation algorithm using representative pixels and adaptive matching scan. IEEE Trans. Circuits Syst. Video Technol. 10(7), 1040–1048 (2000)Google Scholar
  19. 19.
    Feng, J., Lo, K.-T., Mehrpour, H., Karbowiak, A.E.: Adaptive block matching motion estimation algorithm using bit plane matching. In: Proc. ICIP, pp. 496–499 (1995)Google Scholar
  20. 20.
    Natarajan, B., Bhaskaran, V., Konstantinides, K.: Low-complexity block-based motion estimation via one-bit transforms. IEEE Trans. Circuits Syst. Video Technol. 7(4), 702–706 (1997)CrossRefMATHGoogle Scholar
  21. 21.
    Wong, P.H.W., Au, O.C.: Modified one-bit transform for motion estimation. IEEE Trans. Circuits Syst. Video Technol. 9(7), 1020–1024 (1999)CrossRefGoogle Scholar
  22. 22.
    Ertürk, A., Ertürk, S.: Two-Bit Transform for Binary Block Motion Estimation. IEEE Trans. Circuit and Syst. Video Technol 15(7), 938–946 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Begüm Demir
    • 1
  • Sarp Ertürk
    • 1
  1. 1.Electronic and Telecomm. Eng. Dept.Kocaeli University Laboratory of Image and Signal Processing (KULIS)KocaeliTurkey

Personalised recommendations