A Framework for Working with Digitized Cultural Heritage Artifacts

  • Can Ozmen
  • Selim Balcisoy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4263)


In this paper, we present our work in designing, implementing, and evaluating a set of 3D interactive spatial measurement tools in the context of Cultural Heritage Toolbox (CH Toolbox), a framework for computer-aided cultural heritage research. Our application utilizes a bi-manual, spaceball and mouse driven user interface to help the user manage visualized 3D models digitized from real artifacts. We have developed a virtual radius estimator, useful for analyzing incomplete pieces of radial artifacts, and a virtual tape measure, useful in measurement of geodesic distances between two points on the surface of an artifact. We tested the tools on the special case of pottery analysis.


Cultural Heritage Steiner Point Radius Estimation Cultural Heritage Domain Real Artifact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Personal communication with Prof. Bernard Frischer, Univ. of Virgina (2006)Google Scholar
  2. 2.
    Preim, B., Spindler, W., Oldhafer, K.J., Peitgen, H.-O.: 3d distance measurements in medical visualizations. Interactive Medical Image Vis. and Analysis, 31–36 (2001)Google Scholar
  3. 3.
    Gander, W., Golub, G.H., Strebel, R.: Least squares fitting of circles and ellipses. BIT 34, 556–577 (1994)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Krishnamurthy, V., Levoy, M.: Fitting smooth surfaces to dense polygon meshes. In: Proc. of SIGGRAPH 1996, pp. 313–324 (1996)Google Scholar
  5. 5.
    Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. In: Proc. of SIGGRAPH 2004, pp. 652–663 (2004)Google Scholar
  6. 6.
    Floater, M.S., Hormann, K.: Parameterization of triangulations and unorganized points. Tutorials in Multiresolution in Geometric Modeling, pp. 287–315 (2002)Google Scholar
  7. 7.
    Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem. SIAM J. of Computing 16(4), 647–668Google Scholar
  8. 8.
    Mitchell, J.S.B.: Geometric shortest paths and network optimization. Handbook of Computational Geometry, pp. 633–702 (2000)Google Scholar
  9. 9.
    Lanthier, M., Maheshwari, A., Sack, J.-R.: Approximating weighted shortest paths on polyhedral surfaces. In: Proc. 13th Annu. ACM Symp. Computational Geometry, pp. 274–283 (1997)Google Scholar
  10. 10.
    Martinez, D., Velho, L., Carvalho, P.C.: Geodesic paths on triangular meshes. In: Proc. of SIBGRAPI/SIACG, pp. 210–217 (2004)Google Scholar
  11. 11.
    Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. ACM Trans. on Graphics 24(3), 553–560 (2005)CrossRefGoogle Scholar
  12. 12.
    Chen, J., Han, Y.: Shortest paths on a polyhedron: part I: computing shortest paths. Int. J. of Computational Geometry and Applications 6(2), 127–144 (1996)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hinckley, K., Pausch, R., Profitt, D., Kassel, N.F.: Two handed virtual manipulation. ACM Trans. on Human Computer Interaction 5(3), 260–302 (1998)CrossRefGoogle Scholar
  14. 14.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Can Ozmen
    • 1
  • Selim Balcisoy
    • 1
  1. 1.Sabanci UniversityTurkey

Personalised recommendations