Minkowski Sum Based Octree Generation for Triangular Meshes

  • Engin Deniz Diktaṣ
  • Ali Vahit Ṣahiner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4263)


This paper presents an easy-to-implement and efficient method to calculate the Minkowski Sums of simple convex objects. The method is based on direct manipulation of planes in 3D space. The paper then explains how this method is used for generating octrees for scenes consisting of triangular meshes.


Triangular Mesh Convex Polyhedron Dual Graph Voronoi Region Convex Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K., Flato, E., Halperin, D.: Polygon decomposition for efficient construction of Minkowski sums. Comput. Geom. Theory Appl. 21, 39–61 (2002)MATHMathSciNetGoogle Scholar
  2. 2.
    Guibas, L.J., Ramshaw, L., Stolfi, J.: A kinetic framework for computational geometry. In: Proc. 24th Annu. IEEE Sympos. Found. Comput. Sci, pp. 100–111 (1983)Google Scholar
  3. 3.
    Guibas, L.J., Seidel, R.: Computing convolutions by reciprocal search. Disc. Comp. Geom. 2, 175–193 (1987)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gritzmann, P., Sturmfels, B.: Minkowski addition of polytopes: Computational complexity and applications to Grobner bases. SIAM J. Disc. Math 6(2), 246–269 (1993)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fukuda, K.: From the zonotope construction to the Minkowski addition of convex polytopes. Journal of Symbolic Computation 38(4), 1261–1272 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ghosh, P.K.: A unified computational framework for Minkowski operations. Comp. Graph. 17(4), 357–378 (1993)CrossRefGoogle Scholar
  7. 7.
    Bekker, H., Roerdink, J.B.T.M.: An efficient algorithm to calculate the Minkowski sum of convex 3d polyhedra. In: Proc. of the Int. Conf. on Comput. Sci.-Part I, pp. 619–628. Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Fogel, E., Halperin, D.: Exact and Efficient Construction of Minkowski Sums of Convex Polyhedra with Applications. In: ALENEX 2006, Miami, Florida (to appear, 2006)Google Scholar
  9. 9.
    O’Rourke, J.: Computational Geometry In C. Cambridge University Press, Cambridge (1994)MATHGoogle Scholar
  10. 10.
    Eberly, D.: Dynamic Collision Detection using Oriented Bounding Boxes,
  11. 11.
    Diktas, E.D.: A Space Subdivision Framework for Virtual Reality and Haptic Applications, MSc Thesis, Department of Systems & Control Engineering, Bogazici University (June 2006)Google Scholar
  12. 12.
    Diktas, E.D., Sahiner, A.V.: Closest Feature Tracking Using Proximity Octrees, MediaLab Technical Report, Department of Computer Engineering, Bogazici University (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Engin Deniz Diktaṣ
    • 1
  • Ali Vahit Ṣahiner
    • 1
  1. 1.Computer Engineering DepartmentBoğaziçi UniversityIstanbulTurkey

Personalised recommendations