PARM: Data Structure for Efficient Volume Ray Casting

  • Sukhyun Lim
  • Byeong-Seok Shin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4263)


We propose a new data structure to accelerate the color computation step of CPU-based volume ray casting. To ensure interactive frame rates on a PC platform, we store interpolated scalar value and gradient vector required for color computation step in volume ray casting. However, it is difficult to store those two values in preprocessing step because sample points can lie in arbitrary position in a cell. Therefore, after determining candidate cells that contribute to the final images, we partition each candidate cell into several sub-cells. Then, we store trilinearly interpolated scalar value and an index of encoded gradient vector for each sub-cell. Because the information that requires time-consuming computations is already stored in our data structure, color values are determined without further computations.


Gradient Vector Perspective Projection Candidate Cell Data Buffer Volume Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levoy, M.: Display of Surface from Volume Data. IEEE Computer Graphics and Applications 8(3), 29–37 (1988)CrossRefGoogle Scholar
  2. 2.
    Kaufman, A.: Volume Visualization, 1st edn. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  3. 3.
    Krishnamurthy, B., Bajaj, C.: Data Visualization Techniques, 1st edn. John Wiley & Sons, Chichester (1999)Google Scholar
  4. 4.
    Yagel, R., Kaufmann, A.: Template-based Volume Viewing. Computer Graphics Forum 11, 153–167 (1992)CrossRefGoogle Scholar
  5. 5.
    Lacroute, P., Levoy, M.: Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing Transformation. In: Proc. SIGGRAPH 1994, pp. 451–457 (1994)Google Scholar
  6. 6.
    Parker, S., Shirley, P., Livnat, Y., Hansen, C., Sloan, P.: Interactive Ray Tracing for Isosurface Rendering. In: Proc. IEEE Visualization 1998, pp. 233–238 (1998)Google Scholar
  7. 7.
    Knittel, G.: The UltraVis System. In: Proc. IEEE Volume Visualization 2000, pp. 71–79 (2000)Google Scholar
  8. 8.
    Mora, B., Jessel, J.P., Caubet, R.: A New Object Order Ray-Casting Algorithm. In: Proc. IEEE Volume Visualization 2002, pp. 203–210 (2002)Google Scholar
  9. 9.
    Grimm, S., Bruckner, S., Kanitsar, A., Gröller, E.: Memory Efficient Acceleration Structures and Techniques for CPU-based Volume Raycasting of Large Data. In: Proc. IEEE Volume Visualization 2004, pp. 1–8 (2004)Google Scholar
  10. 10.
    Yagel, R., Cohen, D., Kaufmann, A.: Normal Estimation in 3D Discrete Space. The Visual Computer 6, 278–291 (1992)CrossRefGoogle Scholar
  11. 11.
    Möller, T., Machiraju, R., Muller, K., Yagel, R.: A Comparison of Normal Estimation Schemes. In: Proc. IEEE Visualization 1997, pp. 19–26 (1997)Google Scholar
  12. 12.
    Levoy, M.: Efficient Ray Tracing of Volume Data. ACM Transactions on Graphics 9, 245–261 (1990)zbMATHCrossRefGoogle Scholar
  13. 13.
    Rusinkiewicz, S., Levoy, M.: QSplat: A Multiresolution Point Rendering System for Large Meshes. In: Proc. SIGGRAPH 2000, pp. 343–352 (2000)Google Scholar
  14. 14.
    Crow, F.C.: Summed-Area Tables for Texture Mapping. In: Proc. SIGGRAPH 1984, pp. 207–212 (1984)Google Scholar
  15. 15.
    Lim, S., Shin, B.S.: Reliable Space Leaping Using Distance Template. In: Barreiro, J.M., Martín-Sánchez, F., Maojo, V., Sanz, F. (eds.) ISBMDA 2004. LNCS, vol. 3337, pp. 60–66. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Hadwiger, M., Sigg, C., Scharsach, H., Bühler, K., Gross, M.: Real-time Ray-casting and Advanced Shading of Discrete Isosurfaces. Graphics Forum 24, 303–312 (2005)CrossRefGoogle Scholar
  17. 17.
    Lim, S., Shin, B.S.: RPO: A Reverse-Phased Hierarchical Min-Max Octree for Efficient Space-Leaping. In: Proc. Pacific Graphics 2005, pp. 145–147 (2005)Google Scholar
  18. 18.
    Lim, S., Shin, B.S.: Efficient Space-Leaping Using Optimal Block Sets. IEICE Trans. on Information and Systems E88-D, 2864–2870 (2005)CrossRefGoogle Scholar
  19. 19.
    Kim, K., Wittenbrink, C.M., Pang, A.: Extended Specifications and Test Data Sets for Data Level Comparisons of Direct Volume Rendering Algorithms. IEEE Trans. on Visualization and Computer Graphics 7, 299–317 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sukhyun Lim
    • 1
  • Byeong-Seok Shin
    • 1
  1. 1.Dept. Computer Science and Information EngineeringInha UniversityInchonRep. of Korea

Personalised recommendations