Advertisement

Variable Neighborhood Search for the Orienteering Problem

  • Zülal Sevkli
  • F. Erdoğan Sevilgen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4263)

Abstract

The Orienteering Problem (OP) is a version of TSP with profits in which instead of a cycle, a path is sought. In this paper, we consider three variations of Variable Neighborhood Search (VNS) and present the first algorithm solely based on VNS to solve the OP. The experimental results for the benchmark problems indicate that the algorithm, designed by using Reduced VNS instead of the local search phase of the traditional VNS, is the best amongst other variations of VNS we tried; it is the most robust and produces the best results, in terms of solution quality, within a reasonable amount of time. Moreover, it improves the best known results for several benchmark problems and reproduces the best results for others.

Keywords

Local Search Control Point Benchmark Problem Neighborhood Structure Variable Neighborhood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balas, E.: The prize collecting traveling salesman problem. Networks 19, 621–636 (1989)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brimberg, J., Urosevic, D., Mladenovic, N.: Variable neighborhood search for the vertex weighted k-cardinality tree problem. Eur. J. Oper. Res. (2004)Google Scholar
  3. 3.
    Chao, I.-M., Golden, B.L., Wasil, E.A.: A fast and effective heuristic for the orienteering problem. Eur. J. Oper. Res. 88(3), 475–489 (1996)MATHCrossRefGoogle Scholar
  4. 4.
    Feillet, D., Dejax, P., Gendreau, M.: Traveling Salesman Problems with Profits. Transportation Science 39, 188–205 (2005)CrossRefGoogle Scholar
  5. 5.
    Fischetti, M., Gonzalez, J.S., Toth, P.: Solving the orienteering problem through branch-and-cut. Informs J. Comput. 10(2), 133–148 (1998)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Golden, B.L., Assad, A., Dahl, R.: Analysis of a large-scale vehicle routing problem with inventory component. Large Scale Systems 7, 181–190 (1984)MATHGoogle Scholar
  7. 7.
    Golden, B.L., Levy, V.R.: The Orienteering Problem. Naval Res. Logist 34(3), 307–318 (1987)MATHCrossRefGoogle Scholar
  8. 8.
    Golden, B.L., Wang, Q., Liu, L.: A Multifaced heuristic for the orienteering problem. Naval Res. Logist 35, 359–366 (1988)MATHCrossRefGoogle Scholar
  9. 9.
    Hansen, P., Mladenovic, N.: An introduction to variable neighborhood search, in Metaheuristics, advances and in local search paradigms for optimization, i.S.V.e. al, pp. 433–458. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  10. 10.
    Hansen, P., Mladenovic, N.: Variable neighborhood search: principles and applicatons. Eur. J. Oper. Res. 130, 449–467 (2001)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hansen, P., Mladenovic, N.: Variable neighborhood search for the p-Median. Location Sci. 5, 207–226 (1997)MATHCrossRefGoogle Scholar
  12. 12.
    Hayes, M., Norman, J.M.: Dynamic Programming in Orienteering:Route Choice and the Siting of Controls. J. Oper. Res. Soc. 35(9), 791–796 (1984)CrossRefGoogle Scholar
  13. 13.
    Kantor, M.G., Rosenwein, M.B.: The orienteering problem with time windows. J. Oper. Res. Soc. 43(6), 629–635 (1992)MATHCrossRefGoogle Scholar
  14. 14.
    Kataoka, S., Morito, S.: An algorithm for the single constraint maximum collection problem. J. Oper. Res. Soc. 31(4), 515–530 (1988)MATHMathSciNetGoogle Scholar
  15. 15.
    Keller, C.P.: Algorithms to solve orienteering problem: A Comparision. Eur. J. Oper. Res. 41, 224–231 (1989)MATHCrossRefGoogle Scholar
  16. 16.
    Laporte, G., Martello, S.: The selective traveling salesman problem. Discrete Applied M 26, 193–207 (1990)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Leifer, A.C., Rosenwein, M.B.: Strong Lineer Programming relaxations for orienteering problem. Eur. J. Oper. Res. 73, 517–523 (1994)MATHCrossRefGoogle Scholar
  18. 18.
    Liang, Y.-C., Kulturel-Konak, S., Smith, A.E.: Meta Heuristic For the Orienteering Problem. In: Proceeding of the 2002 Congress on Evolutionary Computation (CEC 2002), Hawaii (2002)Google Scholar
  19. 19.
    Ramesh, R., Brown, K.M.: An efficient four-phase heuristic for the generalized orienteering problem. Comput. Oper. Res. 18(2), 151–165 (1991)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Ramesh, R., Yoon, Y.-S., Karwan, M.H.: An optimal algorithm for the orienteering problem. ORSA J. Comput. 4(42), 155–165 (1992)MATHGoogle Scholar
  21. 21.
    Ribeiro, C.C., Souza, M.C.: Variable Neighborhood Search for the degree-constrained minumum spaning tree problem. Discrete Applied M 118, 43–54 (2002)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Tasgetiren, F.M., Smith, A.E.: A genetic algorithm for the orienteering problem. In: Congress Evolutionary Comput. San Diego, CA (2000)Google Scholar
  23. 23.
    Tsiligirides, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35(9), 797–809 (1984)CrossRefGoogle Scholar
  24. 24.
    Wang, Q., Sun, X., Golden, B.L., Jia, J.: Using artificial neural network to solve orienteering problem. Ann. Oper. Res. 61, 111–120 (1995)MATHCrossRefGoogle Scholar
  25. 25.
    Wren, A., Holliday, A.: Computer scheduling of vehicles from one or more depots to a number of delivery points. Oper. Res. Quart. 23, 333–344 (1972)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zülal Sevkli
    • 1
  • F. Erdoğan Sevilgen
    • 2
  1. 1.Department of Computer EngineeringFatih UniversityIstanbulTurkey
  2. 2.Department of Computer EngineeringGebze Institute of TechnologyGebze, KocaeliTurkey

Personalised recommendations