The Implementation of Mazurkiewicz Traces in POEM

  • Peter Niebert
  • Hongyang Qu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4218)


We present the implementation of trace theory in a new model checking tool framework, POEM, that has a strong emphasis on Partial Order Methods. A tree structure is used to store trace systems, which allows sharing common prefixes among traces and therefore reduces memory cost. This structure is easy to extend to incorporate additional features. Two applications are shown in the paper: An extended structure to support a new adequate order for Local First Search, and an acceleration of event zone based state space search for timed automata.


Partial Order Model Check Trace System Event Zone Trace Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Behrmann, G., David, A., Larsen, K.G., Moeller, O., Pettersson, P., Yi, W.: Uppaal - present and future. In: Proc. of 40th IEEE Conference on Decision and Control, IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  2. 2.
    Bornot, S., Morin, R., Niebert, P., Zennou, S.: Black box unfolding with local first search. In: Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp. 386–400. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Bozga, M., Graf, S., Mounier, L.: If-2.0: A validation environment for component-based real-time systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 343–348. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Diekert, V., Rozemberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995)Google Scholar
  5. 5.
    Esparza, J., Römer, S.: An unfolding algorithm for synchronous products of transition systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 2–20. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Esparza, J., Römer, S., Vogler, W.: An improvement of mcmillan’s unfolding algorithm. Formal Methods in System Design 20(3), 285–310 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Godefroid, P., Wolper, P.: A partial approach to model checking. In: Logic in Computer Science, pp. 406–415 (1991)Google Scholar
  8. 8.
    Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of deadlock freedom and safety properties. Formal Methods in System Design 2, 149–164 (1993)MATHCrossRefGoogle Scholar
  9. 9.
    Holzmann, G.: The Spin Model Checker, Primer and Reference Manual. Addison-Wesley, Reading (2003)Google Scholar
  10. 10.
    Holzmann, G., Peled, D.: Partial order reduction of the state space. In: First SPIN Workshop, Montrèal, Quebec (1995)Google Scholar
  11. 11.
    Kurbán, M.E., Niebert, P., Qu, H., Vogler, W.: Stronger reduction criteria for local first search. Technical report (2006) (submitted to ICTAC 2006)Google Scholar
  12. 12.
    Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock explosion problem of timed automata. Theoretical Computer Science 345(1), 27–59 (2005)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    McMillan, K.L.: A technique of state space search based on unfolding. Form. Methods Syst. Des. 6(1), 45–65 (1995)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Niebert, P., Huhn, M., Zennou, S., Lugiez, D.: Local first search: a new paradigm in partial order reductions. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 396–410. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Niebert, P., Qu, H.: Adding invariants to event zone automata. Technical report (2006) (submitted to FORMATS 2006)Google Scholar
  16. 16.
    Parikh, R.J.: On context-free languages. Journal of the ACM 13(4), 570–581 (1966)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Peled, D.: All from one, one for all: on model checking using representatives. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993)Google Scholar
  18. 18.
    Penczek, W., Kuiper, R.: Traces and logic. In: Diekert and Rozemberg, cite[4]Google Scholar
  19. 19.
    Valmari, A.: Stubborn sets for reduced state space generation. In: Applications and Theory of Petri Nets, pp. 491–515 (1989)Google Scholar
  20. 20.
    Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peter Niebert
    • 1
  • Hongyang Qu
    • 1
  1. 1.Laboratoire d’Informatique Fondamentale de MarseilleUniversité de Provence 

Personalised recommendations