Towards a Model-Checker for Counter Systems

  • S. Demri
  • A. Finkel
  • V. Goranko
  • G. van Drimmelen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4218)


This paper deals with model-checking of fragments and extensions of CTL* on infinite-state Presburger counter systems, where the states are vectors of integers and the transitions are determined by means of relations definable within Presburger arithmetic. We have identified a natural class of admissible counter systems (ACS) for which we show that the quantification over paths in CTL* can be simulated by quantification over tuples of natural numbers, eventually allowing translation of the whole Presburger-CTL* into Presburger arithmetic, thereby enabling effective model checking. We have provided evidence that our results are close to optimal with respect to the class of counter systems described above. Finally, we design a complete semi-algorithm to verify first-order LTL properties over trace-flattable counter systems, extending the previous underlying FAST semi-algorithm to verify reachability questions over flattable counter systems.


Model Check Temporal Logic Atomic Formula Counter System Symbolic Model Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BCMS01]
    Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification of infinite structures. In: Handbook of Process Algebra, pp. 545–623. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  2. [BDR03]
    Bruyère, V., Dall’Olio, E., Raskin, J.F.: Durations, parametric model-checking in timed automata with presburger arithmetic. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 687–698. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. [BEH95]
    Bouajjani, A., Echahed, R., Habermehl, P.: On the verification problem of nonregular properties for nonregular processes. In: LICS 1995, pp. 123–133 (1995)Google Scholar
  4. [BEM97]
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)Google Scholar
  5. [BFL04]
    Bardin, S., Finkel, A., Leroux, J.: FASTer acceleration of counter automata in practice. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 576–590. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. [BFLP03]
    Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: Fast Acceleration of Symbolic Transition systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 118–121. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. [BFLS05]
    Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in symbolic model checking. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 474–488. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. [BGP97]
    Bultan, T., Gerber, R., Pugh, W.: Symbolic model checking of infinite state systems using Presburger arithmetic. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 400–411. Springer, Heidelberg (1997)Google Scholar
  9. [BH99]
    Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel systems with nonregular sets of configurations. TCS 221(1–2), 211–250 (1999)MATHCrossRefMathSciNetGoogle Scholar
  10. [Boi98]
    Boigelot, B.: Symbolic methods for exploring infinite state spaces. PhD thesis, Université de Liège (1998)Google Scholar
  11. [CC00]
    Comon, H., Cortier, V.: Flatness is not a weakness. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 262–276. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. [CJ98]
    Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and Presburger analysis. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. [Cor02]
    Cortier, V.: About the decision of reachability for register machines. Theoretical Informatics and Applications 36(4), 341–358 (2002)MATHCrossRefMathSciNetGoogle Scholar
  14. [Dem06]
    Demri, S.: Temporal logics. Lecture notes for MPRI, 2005/2006
  15. [DPK03]
    Dang, Z., San Pietro, P., Kemmerer, R.: Presburger liveness verification of discrete timed automata. TCS 299, 413–438 (2003)MATHCrossRefMathSciNetGoogle Scholar
  16. [EFM99]
    Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: LICS 1999, pp. 352–359 (1999)Google Scholar
  17. [FL02]
    Finkel, A., Leroux, J.: How to compose Presburger accelerations: Applications to broadcast protocols. In: Stumptner, M., Corbett, D.R., Brooks, M. (eds.) Canadian AI 2001. LNCS (LNAI), vol. 2256, pp. 145–156. Springer, Heidelberg (2001)Google Scholar
  18. [FO97]
    Fribourg, L., Olsén, H.: Proving safety properties of infinite state systems by compilation into presburger arithmetic. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 213–227. Springer, Heidelberg (1997)Google Scholar
  19. [FWW97]
    Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking pushdown systems (extended abstract). In: INFINITY 1997. ENTCS, vol. 9, Elsevier Science, Amsterdam (1997)Google Scholar
  20. [Iba78]
    Ibarra, O.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–133 (1978)MATHCrossRefMathSciNetGoogle Scholar
  21. [ISD+00]
    Ibarra, O., Su, J., Dang, Z., Bultan, T., Kemmerer, A.: Counter machines: Decidable properties and applications to verification problems. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 426–435. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. [Lag85]
    Lagarias, J.: The 3x + 1 problem and its generalizations. The American Mathematical Monthly 92(1), 3–23 (1985)MATHCrossRefMathSciNetGoogle Scholar
  23. [Ler03]
    Leroux, J.: Algorithmique de la vérification des systèmes à compteurs. Approximation et accélération. Implémentation de l’outil FAST. PhD thesis, ENS de Cachan, France (2003)Google Scholar
  24. [Ler06]
    Leroux, J.: Regular acceleration for number decision diagrams. Technical Report 1385-06, LABRI (January 2006)Google Scholar
  25. [LS05]
    Leroux, J., Sutre, G.: Flat counter systems are everywhere! In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. [Min67]
    Minsky, M.: Computation, Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)MATHGoogle Scholar
  27. [SS04]
    Schuele, T., Schneider, K.: Global vs. local model checking: A comparison of verification techniques for infinite state systems. In: SEFM 2004, pp. 67–76. IEEE, Los Alamitos (2004)Google Scholar
  28. [Wal01]
    Walukiewicz, I.: Pushdown processes: games and model-checking. I & C 164(2), 234–263 (2001)MATHMathSciNetGoogle Scholar
  29. [Wol83]
    Wolper, P.: Temporal logic can be more expressive. I & C 56, 72–99 (1983)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • S. Demri
    • 1
  • A. Finkel
    • 1
  • V. Goranko
    • 2
  • G. van Drimmelen
    • 2
  1. 1.LSV/CNRS UMR 8643 & INRIA Futurs projet SECSI & ENS Cachan 
  2. 2.University of the WitwatersrandJohannesburg

Personalised recommendations