Symbolic Unfoldings for Networks of Timed Automata

  • Franck Cassez
  • Thomas Chatain
  • Claude Jard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4218)


In this paper we give a symbolic concurrent semantics for network of timed automata (NTA) in terms of extended symbolic nets. Extended symbolic nets are standard occurrence nets extended with read arcs and symbolic constraints on places and transitions. We prove that there is a complete finite prefix for any NTA that contains at least the information of the simulation graph of the NTA but keep explicit the notions of concurrency and causality of the network.


Time Automaton Simulation Graph Partial Order Reduction Clock Variable Causal Past 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science (TCS) 126(2), 183–235 (1994)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager, F.: Minimum-cost reachability for priced timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Salah, R.B., Bozga, M., Maler, O.: On interleaving in timed automata. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Bérard, B., Cassez, F., Haddad, S., Roux, O.H., Lime, D.: Comparison of the Expressiveness of Timed Automata and Time Petri Nets. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 211–225. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets. IEEE Trans. Software Eng. 17(3), 259–273 (1991)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods in System Design 24(3), 281–320 (2004)MATHCrossRefGoogle Scholar
  7. 7.
    Cassez, F., Chatain, T., Jard, C.: Symbolic Unfoldings for Networks of Timed Automata. Technical Report RI-2006-4, IRCCyN/CNRS, Nantes (May 2006)Google Scholar
  8. 8.
    Cassez, F., Roux, O.H.: Structural translation from time petri nets to timed automata. Journal of Systems and Software (forthcoming, 2006)Google Scholar
  9. 9.
    Chatain, T., Jard, C.: Complete finite prefixes of symbolic unfoldings of safe time Petri nets. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 125–145. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Esparza, J., Römer, S.: An unfolding algorithm for synchronous products of transition systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 2–20. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm. Formal Methods in System Design 20(3), 285–310 (2002)MATHCrossRefGoogle Scholar
  12. 12.
    Fleischhack, H., Stehno, C.: Computing a finite prefix of a time Petri net. ICATPN, 163–181 (2002)Google Scholar
  13. 13.
    Bengtsson, J., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed systems. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 485–500. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Efficient verification of real-time systems: Compact data structure and state-space reduction. In: Proc. 18th IEEE Real-Time Systems Symposium (RTSS 1997), pp. 14–24. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  15. 15.
    Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock explosion problem of timed automata. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 296–311. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    McMillan, K.L.: A technique of state space search based on unfolding. Formal Methods in System Design 6(1), 45–65 (1995)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Merlin, P.M., Farber, D.J.: Recoverability of communication protocols – implications of a theorical study. IEEE Transactions on Communications 24 (1976)Google Scholar
  18. 18.
    Minea, M.: Partial order reduction for model checking of timed automata. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 431–446. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Aura, T., Lilius, J.: A causal semantics for time petri nets. Theoretical Computer Science 1–2(243), 409–447 (2000)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Yoneda, T., Schlingloff, B.-H.: Efficient verification of parallel real-time systems. Formal Methods in System Design 2(11), 187–215 (1997)CrossRefGoogle Scholar
  21. 21.
    Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G. (ed.) APN 1990. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991)Google Scholar
  22. 22.
    Belluomini, W., Myers, C.J.: Verification of timed systems using posets. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 403–415. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Franck Cassez
    • 1
  • Thomas Chatain
    • 2
  • Claude Jard
    • 3
  1. 1.CNRS/IRCCyNNantesFrance
  2. 2.IRISA/INRIA, Campus de BeaulieuRennesFrance
  3. 3.IRISA/ENS Cachan, Campus de KerlannBruzFrance

Personalised recommendations