Controller Synthesis and Ordinal Automata

  • Thierry Cachat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4218)


Ordinal automata are used to model physical systems with Zeno behavior. Using automata and games techniques we solve a control problem formulated and left open by Demri and Nowak in 2005. It involves partial observability and a new synchronization between the controller and the environment.


Winning Strategy Limit Transition Observable Action Controller Synthesis Partial Observability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AFH+03]
    de Alfaro, L., Faëlla, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The element of surprise in timed games. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 142–156. Springer, Heidelberg (2003)Google Scholar
  2. [AM98]
    Asarin, E., Maler, O.: Achilles and the tortoise climbing up the arithmetical hierarchy. JCSS 57(3), 389–398 (1998)MATHMathSciNetGoogle Scholar
  3. [BC05]
    Bès, A., Carton, O.: A Kleene theorem for languages of words indexed by linear orderings. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 158–167. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. [BDMP03]
    Bouyer, P., D’Souza, D., Madhusudan, P., Petit, A.: Timed control with partial observability. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 180–192. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. [Bed98]
    Bedon, N.: Langages reconnaissables de mots indexés par des ordinaux. PhD thesis, Université de Marne-la-Vallée (1998)Google Scholar
  6. [Bou99]
    Bournez, O.: Achilles and the tortoise climbing up the hyper-arithmetical hierarchy. TCS 210(1), 21–71 (1999)MATHCrossRefMathSciNetGoogle Scholar
  7. [BP00]
    Bérard, B., Picaronny, C.: Accepting Zeno words: A way toward timed refinements. Acta Informatica 37(1), 45–81 (2000)MATHCrossRefMathSciNetGoogle Scholar
  8. [BS73]
    Buchi, J.R., Siefkes, D.: The monadic second order theory of all countable ordinals. Lect. Notes in Math., vol. 328. Springer, Heidelberg (1973)Google Scholar
  9. [Car02]
    Carton, O.: Accessibility in automata on scattered linear orderings. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 155–164. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. [DL05]
    Durand-Lose, J.: Abstract geometrical computation for black hole computation (extended abstract). In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 176–187. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. [DN05]
    Demri, S., Nowak, D.: Reasoning about transfinite sequences (extended abstract). In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 248–262. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. [GTW02]
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)MATHGoogle Scholar
  13. [GW94]
    Godefroid, P., Wolper, P.: A partial approach to model checking. Inform. and Comput. 110(2), 305–326 (1994)MATHCrossRefMathSciNetGoogle Scholar
  14. [JPZ06]
    Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. In: SODA, pp. 117–123 (2006)Google Scholar
  15. [Kam68]
    Kamp, H.: Tense Logic and the Theory of Linear Order. PhD thesis, University of California at Los Angeles (1968)Google Scholar
  16. [Löd98]
    Löding, C.: Methods for the transformation of omega-automata: Complexity and connection to second order logic. Master’s thesis, Christian-Albrechts-University of Kiel (1998)Google Scholar
  17. [Mar75]
    Martin, D.A.: Borel Determinacy. Annals of Math. 102, 363–371 (1975)CrossRefGoogle Scholar
  18. [Mau96]
    Maurin, F.: Exact complexity bounds for ordinal addition. Theor. Comput. Sci. 165(2), 247–273 (1996)MATHCrossRefMathSciNetGoogle Scholar
  19. [PR89]
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL 1989, pp. 179–190. ACM Press, New York (1989)CrossRefGoogle Scholar
  20. [Rei84]
    Reif, J.H.: The complexity of two-player games of incomplete information. J. Comput. System Sci. 29(2), 274–301 (1984)MATHCrossRefMathSciNetGoogle Scholar
  21. [Ros82]
    Rosenstein, J.G.: Linear orderings. Academic Press, London (1982)MATHGoogle Scholar
  22. [RW89]
    Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. Proceedings of IEEE 77(1), 81–98 (1989)CrossRefGoogle Scholar
  23. [Tho95]
    Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)Google Scholar
  24. [VW86]
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS 1986, pp. 332–344 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thierry Cachat
    • 1
  1. 1.LIAFA/CNRS UMR 7089 & Université Paris 7France

Personalised recommendations