On the Succinctness of Nondeterminism

  • Benjamin Aminof
  • Orna Kupferman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4218)


Much is known about the differences in expressiveness and succinctness between nondeterministic and deterministic automata on infinite words. Much less is known about the relative succinctness of the different classes of nondeterministic automata. For example, while the best translation from a nondeterministic Büchi automaton to a nondeterministic co-Büchi automaton is exponential, and involves determinization, no super-linear lower bound is known. This annoying situation, of not being able to use the power of nondeterminism, nor to show that it is powerless, is shared by more problems, with direct applications in formal verification.

In this paper we study a family of problems of this class. The problems originate from the study of the expressive power of deterministic Büchi automata: Landweber characterizes languages L ⊆ Σ ω that are recognizable by deterministic Büchi automata as those for which there is a regular language R ⊆ Σ* such that L is the limit of R; that is, wL iff w has infinitely many prefixes in R. Two other operators that induce a language of infinite words from a language of finite words are co-limit, where wL iff w has only finitely many prefixes in R, and persistent-limit, where wL iff almost all the prefixes of w are in R. Both co-limit and persistent-limit define languages that are recognizable by deterministic co-Büchi automata. They define them, however, by means of nondeterministic automata. While co-limit is associated with complementation, persistent-limit is associated with universality. For the three limit operators, the deterministic automata for R and L share the same structure. It is not clear, however, whether and how it is possible to relate nondeterministic automata for R and L, or to relate nondeterministic automata to which different limit operators are applied. In the paper, we show that the situation is involved: in some cases we are able to describe a polynomial translation, whereas in some we present an exponential lower bound. For example, going from a nondeterministic automaton for R to a nondeterministic automaton for its limit is polynomial, whereas going to a nondeterministic automaton for its persistent limit is exponential. Our results show that the contribution of nondeterminism to the succinctness of an automaton does depend upon its semantics.


Limit Operator Regular Language Full Version Acceptance Condition Tree Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alpern, B., Schneider, F.B.: Defining liveness. IPL 21, 181–185 (1985)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A., Mador-Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The ForSpec temporal logic: A new temporal property-specification logic. In: Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp. 211–296. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The temporal logic Sugar. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 363–367. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Boigelot, B., Jodogne, S., Wolper, P.: On the use of weak automata for deciding linear arithmetic with integer and real variables. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 611–625. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. International Congress on Logic, Method, and Philosophy of Science. 1960, Stanford, pp. 1–12 (1962)Google Scholar
  6. 6.
    Clarke, E.M., Bierea, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods in System Design 19(1), 7–34 (2001)MATHCrossRefGoogle Scholar
  7. 7.
    Accellera Organization Inc,
  8. 8.
    Krishnan, S.C., Puri, A., Brayton, R.K.: Deterministic ω-automata vis-a-vis deterministic Büchi automata. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS, vol. 834, pp. 378–386. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Kupferman, O., Morgenstern, G., Murano, A.: Typeness for ω-regular automata. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 324–338. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Kupferman, O., Safra, S., Vardi, M.Y.: Relating word and tree automata. In: Proc. 11th LICS, DIMACS, pp. 322–333 (June 1996)Google Scholar
  11. 11.
    Kupferman, O., Vardi, M.Y.: On bounded specifications. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 24–38. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Kupferman, O., Vardi, M.Y.: From linear time to branching time. ACM TOCL 6(2), 273–294 (2005)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Kurshan, R.P.: Computer Aided Verification of Coordinating Processes. Princeton University Press, Princeton (1994)Google Scholar
  14. 14.
    Landweber, L.H.: Decision problems for ω–automata. Mathematical Systems Theory 3, 376–384 (1969)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Löding, C.: Optimal bounds for the transformation of omega-automata. In: Pandu Rangan, C., Raman, V., Ramanujam, R. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 97–109. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Löding, C.: Efficient minimization of deterministic weak omega-automata. IPL 79(3), 105–109 (2001)MATHCrossRefGoogle Scholar
  17. 17.
    McNaughton, R.: Testing and generating infinite sequences by a finite automation. I& C 9, 521–530 (1966)MATHMathSciNetGoogle Scholar
  18. 18.
    Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: Proc. 12th SSAT, pp. 188–191 (1971)Google Scholar
  19. 19.
    Michel, M.: Complementation is more difficult with automata on infinite words. CNET, Paris (1988)Google Scholar
  20. 20.
    Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. TCS 32, 321–330 (1984)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Rabin, M.O.: Decidability of second order theories and automata on infinite trees. Transaction of the AMS 141, 1–35 (1969)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Safra, S.: On the complexity of ω-automata. In: Proc. 29th FOCS, pp. 319–327 (1988)Google Scholar
  23. 23.
    Safra, S., Vardi, M.Y.: On ω-automata and temporal logic. In: Proc. 21st ACM STOC, pp. 127–137 (1989)Google Scholar
  24. 24.
    Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects of Computing 6, 495–511 (1994)MATHCrossRefGoogle Scholar
  25. 25.
    Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, pp. 133–191 (1990)Google Scholar
  26. 26.
    Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. I& C 115(1), 1–37 (1994)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Benjamin Aminof
    • 1
  • Orna Kupferman
    • 1
  1. 1.School of Engineering and Computer ScienceHebrew UniversityJerusalemIsrael

Personalised recommendations