Advertisement

An Open Extensible Tool Environment for Event-B

  • Jean-Raymond Abrial
  • Michael Butler
  • Stefan Hallerstede
  • Laurent Voisin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4260)

Abstract

We consider modelling indispensable for the development of complex systems. Modelling must be carried out in a formal notation to reason and make meaningful conjectures about a model. But formal modelling of complex systems is a difficult task. Even when theorem provers improve further and get more powerful, modelling will remain difficult. The reason for this that modelling is an exploratory activity that requires ingenuity in order to arrive at a meaningful model. We are aware that automated theorem provers can discharge most of the onerous trivial proof obligations that appear when modelling systems. In this article we present a modelling tool that seamlessly integrates modelling and proving similar to what is offered today in modern integrated development environments for programming. The tool is extensible and configurable so that it can be adapted more easily to different application domains and development methods.

Keywords

Model Checker Theorem Prover Proof Obligation Proof Tree Interactive Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press, Cambridge (1996)MATHCrossRefGoogle Scholar
  2. 2.
    Abrial, J.-R., Cansell, D.: Click’n’Prove: Interactive Proofs within Set Theory. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 1–24. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Abrial, J.-R., Hallerstede, S.: Refinement, decomposition and instantiation of discrete models. Fundamentae Informatica (to appear, 2006)Google Scholar
  4. 4.
    Back, R.J.R.: Refinement calculus, part II: Parallel and reactive programs. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp. 67–93. Springer, Heidelberg (1990)Google Scholar
  5. 5.
    Badeau, F., Amelot, A.: Using B as a high level programming language in an industrial project: Roissy VAL. In: Treharne, H., King, S., Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 334–354. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal system development with KIV. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, p. 363. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Barnett, M., Chang, B.-Y., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A Modular Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Bertot, Y., Castéran, P.(P.): Interactive theorem proving and program development: Coq’Art: the calculus of inductive constructions. Texts in theoretical computer science. Springer, Heidelberg (2004)MATHGoogle Scholar
  9. 9.
    Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and Analysis. Springer, Heidelberg (2003)MATHGoogle Scholar
  10. 10.
    Brucker, A.D., Rittinger, F., Wolff, B.: HOL-Z 2.0: A proof environment for Z-specifications. Journal of Universal Computer Science 9(2), 152–172 (2003)Google Scholar
  11. 11.
    Clearsy. Atelier B tool homepage, http://www.atelierb.societe.com/
  12. 12.
    Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. ACM 52(3), 365–473 (2005)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Eclipse. Eclipse platform homepage, http://www.eclipse.org/
  14. 14.
    Filliâtre, J.-C.: Verification of Non-Functional Programs using Interpretations in Type Theory. Journal of Functional Programming 13(4), 709–745 (2003)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Gamma, E., Beck, K.: Contributing to Eclipse. Addison Wesley, Reading (2003)Google Scholar
  16. 16.
    Kaufmann, M., Moore, J.S.: An industrial strength theorem prover for a logic based on common lisp. IEEE Transactions on Software Engineering 23(4), 203–213 (1997)CrossRefGoogle Scholar
  17. 17.
    King, J.C.: A new approach to program testing. In: Proceedings of the international conference on Reliable software, pp. 228–233. ACM Press, New York (1975)CrossRefGoogle Scholar
  18. 18.
    Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley, Reading (2002)Google Scholar
  19. 19.
    Långbacka, T., von Wright, J.: Refining reactive systems in HOL using action systems. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 183–197. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  20. 20.
    Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Morgan, C., Hoang, T.S., Abrial, J.-R.: The challenge of probabilistic event B - extended abstract. In: Treharne, H., King, S., Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 162–171. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Nipkow, T.: Structured Proofs in Isar/HOL. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 259–278. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Paulson, L.C.: Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994)MATHGoogle Scholar
  24. 24.
    RODIN. RODIN project homepage, http://rodin.cs.ncl.ac.uk/
  25. 25.
    RODIN. Deliverable D16: Prototype Plug-in Tools (2006), http://rodin.cs.ncl.ac.uk/deliverables.htm
  26. 26.
    Saaltink, M.: The Z/EVES system. In: Till, D., Bowen, J.P., Hinchey, M.G. (eds.) ZUM 1997. LNCS, vol. 1212, pp. 72–85. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  27. 27.
    Snook, C., Butler, M.: UML-B: Formal modelling and design aided by UML. ACM Transactions on Software Engineering and Methodology (to appear, 2006), http://eprints.ecs.soton.ac.uk/10169/
  28. 28.
    Snook, C., Sandstrom, K.: Using UML-B and U2B for formal refinement of digital components. In: Proceedings of Forum on specification and design languages (FDL 2003) (2003)Google Scholar
  29. 29.
    Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. International Series in Computer Science. Prentice-Hall, New York (1992)Google Scholar
  30. 30.
    Winterstein, D., Aspinall, D., Lüth, C.: Proof general / eclipse: A generic interface for interactive proof. In: IJCAI, pp. 1587–1588 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jean-Raymond Abrial
    • 1
  • Michael Butler
    • 2
  • Stefan Hallerstede
    • 1
  • Laurent Voisin
    • 1
  1. 1.ETH ZurichSwitzerland
  2. 2.University of SouthamptonUnited Kingdom

Personalised recommendations