Advertisement

Mapping RT-LOTOS Specifications into Time Petri Nets

  • Tarek Sadani
  • Marc Boyer
  • Pierre de Saqui-Sannes
  • Jean-Pierre Courtiat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4260)

Abstract

RT-LOTOS is a timed process algebra which enables compact and abstract specification of real-time systems. This paper proposes and illustrates a structural translation of RT-LOTOS terms into behaviorally equivalent (timed bisimilar) finite Time Petri nets. It is therefore possible to apply Time Petri nets verification techniques to the profit of RT-LOTOS. Our approach has been implemented in RTL2TPN, a prototype tool which takes as input an RT-LOTOS specification and outputs a TPN. The latter is verified using TINA, a TPN analyzer developed by LAAS-CNRS. The toolkit made of RTL2TPN and TINA has been positively benchmarked against previously developed RT-LOTOS verification tool.

Keywords

Process Algebra Reachability Graph Input Place Time Progression Input Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ISO - Information processing systems - Open Systems Interconnection: LOTOS - a formal description technique based on the temporal ordering of observational behaviour. ISO International Standard 8807:1989, ISO (1989)Google Scholar
  2. 2.
    Courtiat, J.P., Santos, C., Lohr, C., Outtaj, B.: Experience with RT-LOTOS, a temporal extension of the LOTOS formal description technique. Computer Communications 23(12) (2000)Google Scholar
  3. 3.
    Berthomieu, B., Ribet, P., Vernadat, F.: The TINA tool: Construction of abstract state space for Petri nets and time Petri nets. Int. Journal of Production Research 42(14) (2004)Google Scholar
  4. 4.
    Milner, R.M.: Communications and Concurrency. Prentice Hall, Englewood Cliffs (1989)Google Scholar
  5. 5.
    Hoare, C.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  6. 6.
    Courtiat, J.P.: Formal design of interactive multimedia documents. In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003. LNCS, vol. 2767. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Courtiat, J.P., de Oliveira, R.: On RT-LOTOS and its application to the formal design of multimedia protocols. Annals of Telecommunications 50(11–12), 888–906 (1995)Google Scholar
  8. 8.
    Merlin, P.: A study of the recoverability of computer system. PhD thesis, Dep. Comput. Sci., Univ. California, Irvine (1974)Google Scholar
  9. 9.
    Merlin, P., Faber, D.J.: Recoverability of communication protocols. IEEE Transactions on Communications COM-24(9) (1976)Google Scholar
  10. 10.
    Berthomieu, B., Menasche, M.: Une approche par énumération pour l’analyse des réseaux de Petri temporels. In: Actes de la conférence IFIP 1983, pp. 71–77 (1983)Google Scholar
  11. 11.
    Berthomieu, B., Diaz, M.: Modeling and verification of time dependant systems using Time Petri Nets. IEEE Transactions on Software Engineering 17(3) (1991)Google Scholar
  12. 12.
    Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. Monographs in Theoretical Computer Science: An EATCS Series. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Sadani, T., Boyer, M., de Saqui-Sannes, P., Courtiat, J.P.: Effective representation of regular RT-LOTOS terms by finite time petri nets. Technical Report 05605, LAAS/CNRS (2006)Google Scholar
  14. 14.
    Koutny, M.: A compositional model of time Petri nets. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 303–322. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Taubner, D.A.: Finite Representations of CCS and TCSP Programs by Automata and Petri Nets. LNCS, vol. 369. Springer, Heidelberg (1989)Google Scholar
  16. 16.
    Yi, W.: Real-time behaviour of asynchronous agents. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458. Springer, Heidelberg (1990)Google Scholar
  17. 17.
    RT-LOTOS: Real-time LOTOS home page, http://www.laas.fr/RT-LOTOS/
  18. 18.
    Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)Google Scholar
  19. 19.
    Yannakakis, M., Lee, D.: An efficient algorithm for minimizing real-time transition system. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697. Springer, Heidelberg (1993)Google Scholar
  20. 20.
    Goltz, U.: On representing CCS programs by finite Petri nets. In: Koubek, V., Janiga, L., Chytil, M.P. (eds.) MFCS 1988. LNCS, vol. 324. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  21. 21.
    Olderog, E.R.: Nets, Terms, and formulas. Cambridge University Press, Cambridge (1991)zbMATHCrossRefGoogle Scholar
  22. 22.
    Garavel, H., Sifakis, J.: Compilation and verification of LOTOS specifications. In: Logrippo, L., et al. (eds.) Protocol Specification, Testing and Verification, X. Proceedings of the IFIP WG 6.1 Tenth International Symposium, pp. 379–394. North-Holland, Ottawa, Ont., Canada, Amsterdam, Netherlands (1990)Google Scholar
  23. 23.
    Barbeau, M., von Bochmann, G.: Verification of LOTOS specifications: A Petri net based approach. In: Proc. of Canadian Conf. on Electrical and Computer Engineering (1990)Google Scholar
  24. 24.
    Larrabeiti, D., Quelmada, J., Pavón, S.: From LOTOS to Petri nets through expansion. In: Gotzhein, R., Bredereke, J. (eds.) Proc. of Int. Conf. on Formal Description Techniques and Theory, application and tools (FORTE/PSV 1996) (1996)Google Scholar
  25. 25.
    Barbeau, M., von Bochmann, G.: Extension of the Karp and Miller procedure to LOTOS specifications. Discrete Mathematics and Theoretical Computer Science 3, 103–119 (1991)MathSciNetGoogle Scholar
  26. 26.
    Barbeau, M., von Bochmann, G.: A subset of LOTOS with the computational power of place/transition-nets. In: Ajmone Marsan, M. (ed.) ICATPN 1993. LNCS, vol. 691. Springer, Heidelberg (1993)Google Scholar
  27. 27.
    Garavel, H., Lang, F., Mateescu, R.: An overview of cadp 2001. European Association for software science and technology (EASST) Newsletter 4 (2002)Google Scholar
  28. 28.
    Sisto, R., Valenzano, A.: Mapping Petri nets with inhibitor arcs onto basic LOTOS behavior expressions. IEEE Transactions on computers 44(12), 1361–1370 (1995)zbMATHCrossRefGoogle Scholar
  29. 29.
    Sadani, T., Courtiat, J., de Saqui-Sannes, P.: From RT-LOTOS to time Petri nets. new foundations for a verification platform. In: Proc. of 3rd IEEE Int. Conf. on Software Engineering and Formal Methods (SEFM) (2005)Google Scholar
  30. 30.
    Bolognesi, T., Lucidi, F., Trigila, S.: From timed Petri nets to timed LOTOS. In: Protocol Specification, Testing and Verification X (PSTV), Proceedings of the IFIP WG6.1 Tenth International Symposium on Protocol, pp. 395–408 (1990)Google Scholar
  31. 31.
    Durante, L., Sisto, R., Valenzano, A.: Integration of time Petri net and TE-LOTOS in the design and evaluation of factory communication systems. In: Proc. of the 2nd IEEE Workshop on Factory Communications Systems (WFCS 1997) (1997)Google Scholar
  32. 32.
    Apvrille, L., Courtiat, J.P., Lohr, C., de Saqui-Sannes, P.: TURTLE: A real-time UML profile supported by a formal validation toolkit. IEEE Transactions on Software Engineering 30(4) (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tarek Sadani
    • 1
    • 2
  • Marc Boyer
    • 3
  • Pierre de Saqui-Sannes
    • 1
    • 2
  • Jean-Pierre Courtiat
    • 1
  1. 1.LAAS-CNRSToulouseFrance
  2. 2.ENSICAToulouseFrance
  3. 3.IRIT-CNRS/ENSEEIHTToulouseFrance

Personalised recommendations