Optimising Abstract Object-Oriented Database Schemas

  • Joachim Biskup
  • Ralf Menzel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4215)


Conceptual design is one step on the way from requirements analysis to implementation. During conceptual design of a database application we work with conceptual database schemas, which are based on a formal model. Because of this formal model it is possible to investigate equivalence of schemas and consequently to examine schema transformations. In an earlier work we presented a cost model that allows us to estimate time costs for machine programs of an abstract database machine. In this paper we show how this cost model can be employed to evaluate cost effects of schema transformations. This enables us to steer schema transformations to meet given time requirements of critical database queries and updates. In particular, we analyse the schema transformation pivoting. As a result of such an analysis we can characterise high-level queries and updates and tell how the time required for their execution is affected by the schema transformation.


Machine Operation Cost Model Basic Class Access Structure Database Schema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biskup, J., Menzel, R.: An abstract database machine for cost driven design of object-oriented database schemas. In: Caplinskas, A., Eder, J. (eds.) ADBIS 2001. LNCS, vol. 2151, pp. 366–380. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Biskup, J., Menzel, R.: A flexible cost model for abstract object-oriented database schemas. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 444–462. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Biskup, J., Menzel, R., Polle, T., Sagiv, Y.: A case study on object-oriented database schema design. In: Int. Baltic Workshop on Databases and Inf. Syst., Tallinn, Estonia (1996)Google Scholar
  4. 4.
    Biskup, J., Menzel, R., Polle, T., Sagiv, Y.: Decomposition of relationships through pivoting. In: Thalheim (ed.) [19], pp. 28–41Google Scholar
  5. 5.
    Biskup, J., Polle, T.: Decomposition of object-oriented database schemas. Annals of Mathematics and Artificial Intelligence 33, 119–155 (2001)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Biskup, J., Sagiv, Y., Menzel, R., Polle, T.: A case study on object-oriented database schema design. TR 27/95, Univ. Hildesheim, Inst. f. Informatik (1995)Google Scholar
  7. 7.
    Cattell, R.G.G., Barry, D.K. (eds.): The Object Data Standard: ODMG 3.0. Morgan Kaufmann, San Francisco (2000)Google Scholar
  8. 8.
    Gupta, A., Widom, J.: Local verification of global integrity constraints in distributed databases. In: Proc. 1993 ACM SIGMOD Conf. pp. 49–58 (1993)Google Scholar
  9. 9.
    Hartmann, S.: Decomposing relationship types by pivoting and schema equivalence. Data & Knowledge Eng. 39(1), 75–99 (2001)MATHCrossRefGoogle Scholar
  10. 10.
    Jagadish, H.V., Qian, X.: Integrity maintenance in an object-oriented database. In: Proc. 18th Int. Conf. on VLDB, Vancouver, Canada, pp. 469–480 (1992)Google Scholar
  11. 11.
    Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based languages. J. ACM 42(4), 741–843 (1995)MATHMathSciNetGoogle Scholar
  12. 12.
    Lipeck, U.: Transformation of dynamic integrity constraints into transaction specifications. Theoretical Comput. Sci. 76, 115–142 (1990)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    McCune, W.W., Henschen, L.J.: Maintaining state constraints in relational databases: A proof theoretic basis. J. ACM 36(1), 46–68 (1989)MATHMathSciNetGoogle Scholar
  14. 14.
    Nicolas, J.-M.: Logic for improving integrity checking in relational databases. Acta Inf. 18(3), 227–253 (1982)MATHMathSciNetGoogle Scholar
  15. 15.
    Nixon, B.A.: Representing and using performance requirements during the development of information systems. In: Jarke, M., Bubenko, J., Jeffery, K. (eds.) EDBT 1994. LNCS, vol. 779, pp. 187–200. Springer, Heidelberg (1994)Google Scholar
  16. 16.
    Nixon, B.A.: Management of performance requirements for information systems. IEEE Trans. Softw. Eng. 26(12), 1122–1146 (2000)CrossRefGoogle Scholar
  17. 17.
    Steeg, M.: The conceptual database design optimizer CoDO – Concepts, implementation, application. In: Thalheim (ed.) [19], pp. 105–120Google Scholar
  18. 18.
    Steeg, M., Thalheim, B.: A computational approach to conceptual database optimization. Technical report, BTU Cottbus (May 1995)Google Scholar
  19. 19.
    Thalheim, B. (ed.): ER 1996. LNCS, vol. 1157. Springer, Heidelberg (1996)MATHGoogle Scholar
  20. 20.
    van Bommel, P.: Experiences with EDO: An evolutionary database optimizer. Data & Knowledge Eng. 13(1994), 243–263 (1994)CrossRefGoogle Scholar
  21. 21.
    van Bommel, P., van der Weide, T.P.: Reducing the search space for conceptual schema transformation. Data & Knowledge Eng. 8(1992), 269–292 (1992)MATHCrossRefGoogle Scholar
  22. 22.
    Yao, S.B.: Optimization of query evaluation algorithms. ACM Trans. Database Syst. 4(2), 133–155 (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joachim Biskup
    • 1
  • Ralf Menzel
    • 1
  1. 1.Universität DortmundDortmundGermany

Personalised recommendations