Mining Temporally Changing Web Usage Graphs

  • Prasanna Desikan
  • Jaideep Srivastava
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3932)


Web mining has been explored to a vast degree and different techniques have been proposed for a variety of applications that include Web Search, Web Classification, Web Personalization etc. Most research on Web mining has been from a ‘data-centric’ point of view. The focus has been primarily on developing measures and applications based on data collected from content, structure and usage of Web until a particular time instance. In this project we examine another dimension of Web Mining, namely temporal dimension. Web data has been evolving over time, reflecting the ongoing trends. These changes in data in the temporal dimension reveal new kind of information. This information has not captured the attention of the Web mining research community to a large extent. In this paper, we highlight the significance of studying the evolving nature of the Web graphs. We have classified the approach to such problems at three levels of analysis: single node, sub-graphs and whole graphs. We provide a framework to approach problems in this kind of analysis and identify interesting problems at each level. Our experiments verify the significance of such an analysis and also point to future directions in this area. The approach we take is generic and can be applied to other domains, where data can be modeled as a graph, such as network intrusion detection or social networks.


Authority Score Time Instance Link Prediction User Access Pattern User Navigation Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acharyya, S., Ghosh, J.: A Maximum Entropy Framework for Link Analysis on Directed Graphs. In: LinkKDD2003, Washington DC, USA, pp. 3–13 (2003)Google Scholar
  2. 2.
    Buchner, A., Baumagarten, M., Anand, S., Mulvenna, M., Hughes, J.: Navigation pattern discovery from internet data. In: Proc. of WEBKDD 1999. Workshop on Web Usage Analysis and User Profiling (August 1999)Google Scholar
  3. 3.
    Cadez, I., Heckerman, D., Meek, C., Smyth, P., White, S.: Visualization of Navigation Patterns on a Web Site Using Model Based Clustering. In: Proceedings of the KDD 2000 (2000)Google Scholar
  4. 4.
    Chi, E.H., Pirolli, P., Chen, K., Pitkow, J.: Using Information Scent to Model User Information Needs and Actions on the Web. In: Proc. of ACM CHI 2001 Conference on Human Factors in Computing Systems, Seattle, WA, April 2001, pp. 490–497. ACM Press, New York (2001)Google Scholar
  5. 5.
    Chen, M.S., Park, J.S., Yu, P.S.: Data Mining for path traversal patterns in a web environment. In: 16th International Conference on Distributed Computing Systems (1996)Google Scholar
  6. 6.
    Cooley, R., Mobasher, B., Srivastava, J.: Data Preparation for mining world wide web browsing patterns. Knowledge and Information systems 1(!) (1999)Google Scholar
  7. 7.
    Desikan, P., Srivastava, J., Kumar, V., Tan, P.-N.: Hyperlink Analysis – Techniques & Applications. Army High Performance Computing Center Technical Report (2002)Google Scholar
  8. 8.
    Desikan, P., Srivastava, J.: Temporal Behavior of Web Usage. AHPCRC technical report (August 2003)Google Scholar
  9. 9.
    Ding, C., Zha, H., He, X., Husbands, P., Simon, H.D.: Link Analysis: Hubs and Authori-ties on the World Wide Web. LBNL Tech Report 47847 (May 2001)Google Scholar
  10. 10.
    Douglis, F., Ball, T., Chen, Y.-F., Koutsofios, E.: The AT&T Internet Difference Engine: Tracking and Viewing Changes on the Web. World Wide Web, pp. 27–44 (January 1998)Google Scholar
  11. 11.
    Etzioni, O.: The World Wide Web: Quagmire or Gold Mine. Communications of the ACM 39(11), 65–68 (1996)CrossRefGoogle Scholar
  12. 12.
    Grandi, F.: Introducing an Annotated Bibliography on Temporal and Evolution Aspects in the World Wide Web. SIGMOD Record 33(2), 84–86 (2004)CrossRefGoogle Scholar
  13. 13.
    Huang, J.Z., Ng, M., Ching, W.K., Ng, J., Cheung, D.: A Cube model and cluster analysis for Web Access Sessions. In: Kohavi, R., Masand, B., Spiliopoulou, M., Srivastava, J. (eds.) WebKDD 2001. LNCS, vol. 2356, p. 48. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Jin, X., Zhou, Y., Mobasher, B.: Web Usage Mining Based on Probabilistic Latent Semantic Analysis. In: Proceedings of KDD 2004, Seattle (August 2004)Google Scholar
  15. 15.
    Kleinberg, J.M.: Authoritative Sources in Hyperlinked Environment. In: 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 667–668 (1998)Google Scholar
  16. 16.
    Klienberg, J., et al.: The web as a graph: Measurement models & methods. In: Proc. ICCC (1999)Google Scholar
  17. 17.
    Kuramochi, M., Karypis, G.: Finding Frequent Patterns in a Large Sparse Graphs. In: SIAM Data Mining Conference (2004)Google Scholar
  18. 18.
    Levene, M., Poulovassilis, A.: Web Dynamics: Adapting to Change in Content, Size, Topology and Use, Hardcover, vol. XIII, p. 466 (2004), ISBN: 3-540-40676-X Google Scholar
  19. 19.
    Mobasher, B., Dai, H., Luo, T., Sung, Y., Zhu, J.: Integrating Web Usage and Content Mining for More Effective Personalization. In: Proc. of the International Conference on E-Commerce and Web Technologies (ECWeb2000), Greenwich, UK (2000)Google Scholar
  20. 20.
    Nasraoui, O., Cardona, C., Rojas, C., Gonzalez, F.: Mining Evolving User Profiles in Noisy Web Clickstream Data with a Scalable Immune System Clustering Algorithm. In: Proc. of WebKDD 2003 – KDD Workshop on Web mining as a Premise to Effective and Intelligent Web Applications, Washington DC, p. 71 (August 2003)Google Scholar
  21. 21.
    Nasraoui, O., Joshi, A., Krishnapuram, R.: Relational Clustering Based on a New Robust Estimator with Application to Web Mining. In: Proc. Intl. Conf. North American Fuzzy Info. Proc. Society (NAFIPS 1999), New York (June 1999)Google Scholar
  22. 22.
    Oztekin, B.U., Ertoz, L., Kumar, V.: Usage Aware PageRank. In: World Wide Web Conference (2003) Google Scholar
  23. 23.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. Stanford Digital Library Technologies (January 1998)Google Scholar
  24. 24.
    Perkowitz, M., Etzioni, O.: Adaptive Web sites: an AI challenge. In: IJCAI (1997)Google Scholar
  25. 25.
    Pierrakos, D., Paliouras, G., Papatheodorou, C., Spyropoulos, C.: Web usage mining as a tool for personalization: A survey. User Modeling and User-Adapted Interaction (2003)Google Scholar
  26. 26.
    Pirolli, P., Pitkow, J.E.: Distribution of Surfer’s Path Through the World Wide Web: Empirical Characterization. World Wide Web 1, 1–17 (1999)Google Scholar
  27. 27.
    Sarukkai, R.R.: Link Prediction and Path Analysis using Markov Chains. In: Proc. of the 9th World Wide Web Conference (1999)Google Scholar
  28. 28.
    Srivastava, J., Cooley, R., Deshpande, M., Tan, P.-N.: Web Usage Mining: Discovery and Applications of usage patterns from Web Data. SIGKDD Explorations (2000)Google Scholar
  29. 29.
    Srivastava, J., Desikan, P., Kumar, V.: Web Mining – Concepts, Applications and Research Directions. In: NGDM. MIT/AAAI PressGoogle Scholar
  30. 30.
    Yan, T., Jacobsen, M., Garcia-Molina, H., Dayal, U.: From user access patterns to dynamic hypertext linking. In: Proceedings of the 5th International World Wide Web conference, Paris, France (1996)Google Scholar
  31. 31.
    Zhu, J., Hong, J., Hughes, J.G.: Using Markov Chains for Link Prediction in Adaptive Web Sites. In: Proc. of ACM SIGWEB Hypertext (2002)Google Scholar
  32. 32.
    Internet Archive,

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Prasanna Desikan
    • 1
  • Jaideep Srivastava
    • 1
  1. 1.Department of Computer Science University of MinnesotaMinneapolisUSA

Personalised recommendations