Advertisement

Event Correlation and Pattern Detection in CEDR

  • Roger S. Barga
  • Hillary Caituiro-Monge
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4254)

Abstract

Event processing will play an increasingly important role in constructing distributed applications that can immediately react to critical events. In this paper we describe the CEDR language for expressing complex event queries that filter and correlate events to match specific patterns, and transform the relevant events into new composite events for the use of monitoring applications. Stream-based execution of these standing queries offers instant insight for users to see what is occurring in their systems and to take time-critical actions.

Keywords

Event Type Event Processing Composite Event Event Pattern Pattern Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems. Addison Wesley Publishers, Reading (2002)Google Scholar
  2. 2.
    Zimmer, D., Unland, R.: On the semantics of complex events in active database management systems. In: The Proceedings of ICDE, March 1999, pp. 392–399 (1999)Google Scholar
  3. 3.
    Barga, R.S., Caituiro-Monge, H.: CEDR – a runtime service for event correlation and pattern detection. In: ACM Middleware 2005 Conference, (2005) (demo presentation and short paper)Google Scholar
  4. 4.
    Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M., Chandra, T.D.: Matching events in a content-based subscription system. In: Proc. of Principles of Distributed Computing (1999)Google Scholar
  5. 5.
    Demers, A., Gehrke, J., Hong, M., Riedewald, M., et al.: Towards expressive publish/Subscribe systems. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 627–644. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Fabret, F., Jacobsen, H.A., Llirbat, Pereira, J., Ross, K.A., Shasha, D.: Filtering algorithms and implementation for very fast publish/subscribe systems. In: SIGMOD, pp. 115–126 (2001)Google Scholar
  7. 7.
    Franklin, M.J., Jeffery, S., Krishnamurthy, S., Reiss, F., Rizvi, S., Wu, E., Cooper, O., Edakkunni, A., Hong, W.: Design considerations for high fan-in systems: The HiFi approach. In: CIDR (2005)Google Scholar
  8. 8.
    Hinze, A.: Efficient filtering of composite events. In: Proc. of the British National Database Conference, pp. 207–225 (2003)Google Scholar
  9. 9.
    Rizvi, S., Jeffery, S.R., Krishnamurthy, S., Franklin, M.J., Burkhart, N., et al.: Events on the edge. In: SIGMOD, pp. 885–887 (2005)Google Scholar
  10. 10.
    Wang, F., Liu, P.: Temporal management of RFID data. In: VLDB, pp. 1128–1139 (2005)Google Scholar
  11. 11.
    Abadi, D.J., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.B.: Aurora: A New Model and Architecture for Data Stream Management. VLDB Journal 12(2), 120–139 (2003)CrossRefGoogle Scholar
  12. 12.
    Arasu, A., Babu, S., Widom, J.: The CQL Continuous Query Language: Semantic Foundations and Query Execution. Technical report, Stanford University (2003)Google Scholar
  13. 13.
    Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker, M., Tatbul, N., Zdonik, S.B.: Monitoring Streams: A New Class of Data Management Applications. In: Proc. of the Conf. on Very Large Databases (VLDB), pp. 215–226 (2002)Google Scholar
  14. 14.
    Chandrasekaran, S., Cooper, O., A. D., et al.: TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In: Proc. of the Conference on Innovative Data Systems Research (CIDR) (2003)Google Scholar
  15. 15.
    Golab, L., Ozsu, M.T.: Issues in Data Stream Management. SIGMOD Record 32(2), 5–14 (2003)CrossRefGoogle Scholar
  16. 16.
    Jagadish, H.V., Mumick, I.S., Silberschatz, A.: View Maintenance Issues for the Chronicle Data Model. In: Proc. of the ACM SIGMOD, pp. 113–124 (1995)Google Scholar
  17. 17.
    Seshadri, P., Livny, M., Ramakrishnan, R.: The Design and Implementation of a Sequence Database System. In: The Proceedings of the Conference on Very Large Databases (VLDB), pp. 99–110 (1996)Google Scholar
  18. 18.
    Sullivan, M., Heybey, A.: Tribeca: A System for Managing Large Databases of Network Traffic. In: Proc. of the USENIX Annual Technical Conference, pp. 13–24 (1998)Google Scholar
  19. 19.
    Terry, D.B., Goldberg, D., Nichols, D., Oki, B.M.: Continuous Queries over Append-Only Databases. In: Proc. of the ACM SIGMOD, pp. 321–330 (1992)Google Scholar
  20. 20.
    Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.: Composite events for active data-bases: Semantics, contexts and detection. In: VLDB, pp. 606–617 (1994)Google Scholar
  21. 21.
    Gehani, N.H., Jagadish, H.V., Shmueli, O.: Composite event specification in active data-bases: Model and implementation. In: VLDB, pp. 327–338 (1992)Google Scholar
  22. 22.
    Etzion, O.: Complex Event Processing. In: The Proc. of the Intl. Conf. on Web Services (ICWS), pp. 185–197 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Roger S. Barga
    • 1
  • Hillary Caituiro-Monge
    • 2
  1. 1.Microsoft ResearchRedmond
  2. 2.Computer Science DepartmentUC Santa BarbaraSanta Barbara

Personalised recommendations