NaviMoz: Mining Navigational Patterns in Portal Catalogs

  • Eleni Christodoulou
  • Theodore Dalamagas
  • Timos Sellis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4254)


Portal Catalogs is a popular means of searching for information on the Web. They provide querying and browsing capabilities on data organized in a hierarchy, on a category/subcategory basis. This paper presents mining techniques on user navigational patterns in the hierarchies of portal catalogs. Specifically, we study and implement navigation retrieval methods and clustering tasks based on navigational patterns. The above mining tasks are quite useful for portal administrators, since they can be used to observe users’ behavior, extract personal preferences and re-organize the structure of the portal to satisfy better user needs and navigational habits. These mining tasks have been implemented in the NaviMoz, a prototype system for mining navigational patterns in portal catalogs.


Minimum Span Tree Input Pattern Mining Task Cluster Task Xpath Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eirinaki, M., Vazirgiannis, M.: Web mining for web personalization. ACM Transactions on Internet Technology (TOIT) 3(1) (2003)Google Scholar
  2. 2.
    Anderson, C.R., Horvitz, E.: A Dynamic Personalized Start Page. In: Proceedings of the 11th WWW Conference 2002 (2002)Google Scholar
  3. 3.
    Ajijth, A., Ramos, V.: Web Usage Mining Using Artificial Ant Colony Clustering and Genetic Programming. In: Congress on Evolutionary Computation, Canberra, Australia, December 2003, pp. 1384–1391. IEEE Press, Los Alamitos (2003)Google Scholar
  4. 4.
    Fang, X., Liu Sheng, O.R.: Designing a Better Web Portal for Digital Government: A Web-Mining Based Approach,
  5. 5.
    Kaneta, Y., Munna Ahaduzzaman, M.M., Ohkawa, T.: A Method of Extracting Sentences Related to Protein Interaction from Literature using a Structure Database. In: Proceedings of the 2nd European Workshop on Data Mining and Text Mining for Bioinformatics (ECML/PKDD 2004), Italy (September 2004)Google Scholar
  6. 6.
    Kamdar, T., Joshi, A.: On Creating Adaptive Web Sites using Web Log Mining, TR-CS-00-05. Department of Computer Science and Electrical Engineering University of Maryland, Baltimore Country (2000)Google Scholar
  7. 7.
    Krishnamurthy, L., Nadeau, J., Ozsoyoglu, G., Ozsoyoglu, M., Schaeffer, G., Tasan, M., Xu, W.: Pathways Database System: An integrated set of tools for biological pathways. Bioinformatics 19(8) (2003)Google Scholar
  8. 8.
    Mobasher, B., Dai, H., Luo, T., Sung, Y., Zhu, J.: Integrating Web Usage and Content Mining for More Effective Personalization. In: Proceedings of the International Conference on E-Commerce and Web Technologies, Greenwich, UK, pp. 165–176 (2000)Google Scholar
  9. 9.
    Pensa, R.G., Leschi, C., Besson, J., Boulicaut, J.: Assessment of discretization techniques for relevant pattern discovery from gene expression data. In: Proceedings of the 2nd Workshop on Data Mining in Bioinformatics, Seattle, USA (August 2004)Google Scholar
  10. 10.
    Pierrakos, D., Paliouras, G., Papatheodorou, C., Karkaletsis, V., Dikaiakos, M.: Web community directories: A new approach to web personalization. In: Berendt, B., Hotho, A., Mladenič, D., van Someren, M., Spiliopoulou, M., Stumme, G. (eds.) EWMF 2003. LNCS, vol. 3209, pp. 113–129. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Toolan, F., Kusmerick, N.: Mining web logs for personalized site maps. In: Proceedings of the 3rd International Conference on Web Information Systems Engineering (WISE 2002) (2002)Google Scholar
  12. 12.
    Wagner, R.A., Fischer, M.J.: The String to String Correction Problem. Journal of the Association for the Computer Machinery 21(1), 168–173 (1974)MATHMathSciNetGoogle Scholar
  13. 13.
    Rasmussen, E.: Clustering algorithms. In: Frakes, W., Baeza-Yates, R. (eds.) Information Retrieval: Data Structures and Algorithms. Prentice Hall, Englewood Cliffs (1992)Google Scholar
  14. 14.
    Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Clustering algorithms and validity measures. In: Proceedings of the SSDBM Conference, Virginia, USA (2001)Google Scholar
  15. 15.
    Dalamagas, T., Cheng, T., Winkel, K.J., Sellis, T.: A Methodology for Clustering XML Documents by Structure. In: Information Systems. Elsevier, Amsterdam (2004)Google Scholar
  16. 16.
    Hubert, L.J., Levin, J.R.: A general statistical framework for accessing categorical clustering in free recall. Psychological Bulletin 83, 1072–1082 (1976)CrossRefGoogle Scholar
  17. 17.
    Baumgarten, M., Buchner, A.G., Anand, S.S., Mulvenna, M.D., Hughes, J.G.: User-Driven Navigation Pattern Discovery from Internet Data, pp. 74–91Google Scholar
  18. 18.
    Agrawal, R., Psaila, G., Wimmers, E.L., Zat, M.: Querying shapes of histories. In: Proceedings of 21st International Conference on Very Large Data Bases, pp. 502–514. Morgan Kaufmann, San Francisco (1995)Google Scholar
  19. 19.
    XML path language, XPath:
  20. 20.
    Jardine, N., van Rijsbergen, C.J.: The use of hierarchical clustering in information retrieval. Information storage and retrieval 7, 217–240 (1971)CrossRefGoogle Scholar
  21. 21.
    Voorhees, E.: The effectiveness and efficiency of agglomerative hierarchic clustering in document retrieval, Ph.D. thesis, Cornell University, Ithaca, New York (October 1985)Google Scholar
  22. 22.
    Hearst, M., Pedersen, J.O.: Reexamining the cluster hypothesis: Scatter/gather on retrieval results. In: Proceedings of the ACM SIGIR Conference, Zurich, Switzerland, pp. 76–84 (1996)Google Scholar
  23. 23.
    Cormen, T., Leiserson, C., Rivest, R.: Introduction to algorithms. MIT Press, Cambridge (1990)MATHGoogle Scholar
  24. 24.
    Gower, J.C., Ross, G.J.S.: Minimum spanning trees and single linkage cluster analysis. Applied Statistics 18, 54–64 (1969)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Milligan, G.W., Cooper, M.C.: An examination of procedures for determining the number of clusters in a data set. Psychometrika 50, 159–179 (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Eleni Christodoulou
    • 1
  • Theodore Dalamagas
    • 1
  • Timos Sellis
    • 1
  1. 1.School of Electr. and Comp. Engineering, National Techn.University of AthensAthensUSA

Personalised recommendations