Data Stream Sharing

  • Richard Kuntschke
  • Alfons Kemper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4254)


Recent research efforts in the fields of data stream processing and data stream management systems (DSMSs) show the increasing importance of processing data streams, e. g., in the e-science domain. Together with the advent of peer-to-peer (P2P) networks and grid computing, this leads to the necessity of developing new techniques for distributing and processing continuous queries over data streams in such networks. In this paper, we present a novel approach for optimizing the integration, distribution, and execution of newly registered continuous queries over data streams in grid-based P2P networks. We introduce Windowed XQuery (WXQuery), our XQuery-based subscription language for continuous queries over XML data streams supporting window-based operators. Concentrating on filtering and window-based aggregation, we present our stream sharing algorithms as well as experimental evaluation results from the astrophysics application domain to assess our approach.


Data Stream Input Stream Continuous Query Data Window Input Data Stream 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stegmaier, B., Kuntschke, R., Kemper, A.: StreamGlobe: Adaptive Query Processing and Optimization in Streaming P2P Environments. In: Proc. of the Intl. Workshop on Data Management for Sensor Networks, Toronto, Canada, pp. 88–97 (2004)Google Scholar
  2. 2.
    Kuntschke, R., Stegmaier, B., Kemper, A., Reiser, A.: StreamGlobe: Processing and Sharing Data Streams in Grid-Based P2P Infrastructures. In: Proc. of the Intl. Conf. on Very Large Data Bases, Trondheim, Norway, pp. 1259–1262 (2005)Google Scholar
  3. 3.
    Yang, B., Garcia-Molina, H.: Designing a Super-Peer Network. In: Proc. of the IEEE Intl. Conf. on Data Engineering, Bangalore, India, pp. 49–60 (2003)Google Scholar
  4. 4.
    W3C: XQuery 1.0: An XML Query Language (W3C Candidate Recommendation, November 3, 2005) (2005),
  5. 5.
    Rosenkrantz, D.J., Hunt, H.B.: Processing Conjunctive Predicates and Queries. In: Proc. of the Intl. Conf. on Very Large Data Bases, Montreal, Canada, pp. 64–72 (1980)Google Scholar
  6. 6.
    Arasu, A., Widom, J.: Resource Sharing in Continuous Sliding-Window Aggregates. In: [18], pp. 336–347Google Scholar
  7. 7.
    Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.H., Lindner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.: The Design of the Borealis Stream Processing Engine. In: Proc. of the Conf. on Innovative Data Systems Research, Asilomar, CA, USA, pp. 277–289 (2005)Google Scholar
  8. 8.
    Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa, I., Srivastava, U., Thomas, D., Varma, R., Widom, J.: STREAM: The Stanford Stream Data Manager. IEEE Data Engineering Bulletin 26(1), 19–26 (2003)Google Scholar
  9. 9.
    Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.: TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In: [19]Google Scholar
  10. 10.
    Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A Scalable Continuous Query System for Internet Databases. In: Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, Dallas, TX, USA, pp. 379–390 (2000)Google Scholar
  11. 11.
    Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Çetintemel, U., Xing, Y., Zdonik, S.B.: Scalable Distributed Stream Processing. In: [19]Google Scholar
  12. 12.
    Yao, Y., Gehrke, J.: The Cougar Approach to In-Network Query Processing in Sensor Networks. ACM SIGMOD Record 31(3), 9–18 (2002)CrossRefGoogle Scholar
  13. 13.
    Sellis, T.K.: Multiple-Query Optimization. ACM Trans. on Database Systems 13(1), 23–52 (1988)CrossRefGoogle Scholar
  14. 14.
    Madden, S., Shah, M.A., Hellerstein, J.M., Raman, V.: Continuously Adaptive Continuous Queries over Streams. In: Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, Madison, WI, USA, pp. 49–60 (2002)Google Scholar
  15. 15.
    Krishnamurthy, S., Franklin, M.J., Hellerstein, J.M., Jacobson, G.: The Case for Precision Sharing. In: [18], pp. 972–986Google Scholar
  16. 16.
    Dong, X., Halevy, A.Y., Tatarinov, I.: Containment of Nested XML Queries. In: [18], pp. 132–143Google Scholar
  17. 17.
    Kuntschke, R., Stegmaier, B., Kemper, A.: Data Stream Sharing. Technical Report TUM-I0504, Technische Universität München (2005)Google Scholar
  18. 18.
    Proc. of the Intl. Conf. on Very Large Data Bases, Toronto, Canada (2004)Google Scholar
  19. 19.
    Proc. of the Conf. on Innovative Data Systems Research, Asilomar, CA, USA (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Richard Kuntschke
    • 1
  • Alfons Kemper
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenMunichGermany

Personalised recommendations